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Introduction

« Railroad industry is an infrastructure intensive industry that relies on
significant amounts of information and data for operations and maintenance.

« In US, railroad data collection encompasses the full range of railroad
activities
— Monitoring over 30,000, 000 car loads (shipments) per year,

— Managing railroad fleet of over 1.3 Million rail cars and 24,000
locomotives

— Managing the infrastructure of over 330,000 km (200,000 miles) of
track, which is owned and maintained by the railroads themselves.

» Focus of this presentation
— US railroad industry’s annual revenues are of the order of $60 Billion
« Annual capital program over $15 Billion a year.
« US represents approximately 25% of worldwide RR industry
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Evolution of Infrastructure
Inspection and Data Analysis

RR management of the infrastructure has evolved from a subjective activity
performed by a large labor force geographically distributed along the
railroad lines, to an objective, technology active, data focused centrally
managed activity.

Current inspection makes use of a broad range of inspection vehicle to
collect data

New generation of maintenance management software systems analyzes
and interprets this data

Railroads represent an industry that is starting to make extensive use of its
“big data”

— to optimize its capital infrastructure and safely manage its operations
while keeping costs under control.
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Integration of Data Acquisition Systems and
Data Analytics in Maintenance Actions
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Predictive Maintenance for Rail Vehicles

New tools, new processes ,
New ways of working

—
System ;
Availability
Predictive Maintenance
CBM
(Condition-based
Time or Mileage Maintenance)
based
RCM 4 Maintenance
(Reliability- ]
Centered Cc_)rrectlve
Maintenance) Maintenance

Maintenance productivity
(reduction of material & labour cost)

Flix, Nicolas, “HealthHub, Shaped for Best and Easiest Control of Railways System Operations”, Maintenance
Engineering Director, Alstom Transport, Big Data in Railroad Maintenance Planning Conference, December 2017,
University of Delaware, Newark DE.
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Use of Data to Move from Reactive to
Prescriptive Maintenance

Prescriptive
Predictive
Preventive

Reactive What s it?

Using historical information plus real-time
What is it? " g

asset data to predict failures and provide
Using historical data, real-time asset guidance on how to fix the problem

What is it? information and contextual data to predict
Using expert knowledge on assets when particular assets are going to fail
to help prevent future failures

What is it?
Fixing-what's-broken approach

This bare-bones approach is This is a critical step in order to This is incredibly valuable and This is next-level
unsustainable today graduate to predictive very difficult
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Big Data in Railroad Track
Infrastructure Inspection

* Most infrastructure inspection is performed from rail inspection vehicles
— High Speed track geometry inspection vehicles
« Attended
« Unattended
— Ultrasonic rail test vehicles
— Rail wear inspection vehicles (laser wear measurement)
— Gauge restraint measurement vehicles
— Ballast profile and subsurface inspection vehicles (LIDAR and GPR)
— Tie (sleeper) inspection systems (Aurora)
— Dynamic load measurement systems (V/TlI, etc.)
— Ride Quality measurement systems
— Track stiffness measurement systems (M-Rail)
— Video inspection data
— Clearance measurement systems (LIDAR)
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Example: Track Geometry Car Data

« Track geometry inspection vehicles, operate at track speeds of up to 130
kph (80 mph) for freight railroads and 200 kph (125 mph) for passenger
railroads

« Main line tracks being measured from one to up to 12 times a year.

« Collect 10 to 12+ channel of data with a measurement taken as often as
every foot.

* Represents over 2,500,000,000 data measurements per year of geometry
only (Terrabytes of data)
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Reduction in Track Caused Derailments as a
Function of Increased Track Inspection
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Supplemental Infrastructure Inspection

Supplemented by track based measurements of vehicle condition such as:

Wheel load/impact detectors

Lateral force detectors
L/V detectors
Wheel profile measurement systems

Overheated bearing detectors
Dragging equipment detectors

On a busy mainline a detector would measure over 3 Million wheels a year

Helps identify rolling stock that causes disproportionate damage to the
infrastructure
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Case Studies

« Big Data Analysis of Track Degradation Behavior
— Rail Wear
— Track Geometry vs GPR measured Ballast Condition

10
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Infrastructure Degradation: Rail Wear

» Rail continues to be one of the track’s most vital assets
— Key part of railway infrastructure
— Replacement cost $500,000 to $1,000,000 per mile

« Currently inspected using laser/machine vision technology
— Multiple times per year
— Every 5’-15’ (1.5 to 4.5 meters)
— Cartesian coordinates of rail profile

» Generates terabytes of data

« Traditional modeling
— Linear regression

——

Geometry Car Run
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Rail Wear in Curve (over time)

Head wear on a high rail in a curve with leading and trailing tangents

* High rail head wear

* 11 measurements in 6 years

* Longitudinal misalignment

« Easily see increase in wear
— Over time/MGT
— Non uniform in curve

es)

Milepost
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Aligned Data

Head wear on a high rail in a curve with leading and trailing tangents

226.9
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Milepost

12/8/2009

8/9/2010

11/4/2010

3/14/2007 10/9/2007 5/22/2008 10/26/2011

8/25/2008

1/26/2009

Head Wear (inches)

Results in 400 samples for
each inspection at same
milepost locations with
consistent distance interval

Shift
Insp Date Corr Coef Lag Miles Feet
3/14/07 Reference 0 0 0
10/9/07 0.82 42 0.042 222
5/22/08 0.86 37 0.037 195
8/25/08 0.87 31 0.031 164
I o on s ous o
12/8/09 0.84 39 0.039 206
8/9/10 0.69 80 0.080 422
11/4/10 0.82 44 0.044 232
10/26/11 0.83 44 0.044 232
9/25/12 0.86 32 0.032 169
1/8/13 0.80 49 0.049 259

Head wear on a high rail in a curve with leading and trailing tangents (aligned)

227.1

9/25/2012 1/8/2013
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3-D Plot: Head Wear, MP, Sum MGT
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ARIMA — Auto Regressive Integrated Moving Average

Make data stationary — B MP 226.8952
remove linear trend '

Fit function — linear s e e
interpolation

Up-sample — Common MGT
interval

Perform ARIMA modeling L R e

Predict next MGT intervals

Handles calibration and measurement errors

Converges to linear trend in some cases

Model developed from 570-804 MGT

Forecast to 910 MGT to compare against next 3 measurements
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Head Wear (inches)

Head Wear Rate (in/MGT)
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ARIMA Forecast Example

5 Degree Curve
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ARIMA Forecast Example

7.25 Degree Curve
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Forecasting Replacement

WearR in/100MGT
» 7.25 degree curve wear faster car Rates {In/100MGT

5Deg Curve 7.25Deg Curve

than 5 degree curve Head  Gage Head  Gage

Minimum 0.0427  0.0003 0.0823  0.0092

- 2X for head Maximum 0.0574  0.0137 0.1074  0.0311

— 3x for gage Average 0.0515  0.0081 0.0932  0.0211

. Slgnlflcant tlme (MGT) dlﬂ:erence Std Dev 0.0036 0.0028 0.0069 0.0053

to replacement based on first hit, MGT to Head Wear Limit

50% of curve, 100% of curve e - e
— 6 to 10 year difference in 100% 1577 866

remaining “life”
Replacement Date (30 MGT/Yr)
First Hit 4/21/2038 12/9/2019
50% 4/20/2041 12/8/2022
100% 12/17/2048 4/8/2025
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Predicting Development of Track Geometry
using GPR measured Ballast Condition

How does Ballast and subgrade condition as measured by ground
penetrating radar (GPR) influence the probability of a track geometry
anomaly occurring

GPR measures:

— Ballast Fouling

— Ballast layer thickness " .
— Ballast Moisture content @
Focus of profile (surface)
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Track Geometry Data

* Right Profile, 62’ ( 20 Right Profile 62, MP 62-64
meter) Chord 1
« Data every foot o

* Inspection date
associated with
degraded track section

Right Profile 62 [in)
l) (I] C
BN

MP [mile]
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Preliminary Analysis

° Examlne three track Jan14 - Jan15 BFI R max vs Rprof62 SD100 & trendline slop
segments r-oomas ssur
— Highly fouled (red) '
— Moderately fouled (yellow)
— Relatively clean (green)

* Develop Track Quality
Index (TQI) for Right
Profile, 62’ chord

— One year trend in TQI for
each track segment

« Magnitude and trend of
TQI show strong
correlation to BFI P —
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Logistic Regression Model

» Stochastic process for categorizing dependent on/off or binary (0/1)
conditions to primary independent variables

» Gives the probability of the binary event as a function of
independent variable

» Probability geometry defect > 0.4”

Probability of developing geometry defect as function of:
— Ballast Fouling Index (BFI)
— Ballast Layer thickness (BLT)

logit(P) = ln( ) = —4.98 4+ 0.04 - BFl;epter +0.18 BFl g5 — 0.92 * BLT copter

1-P

A o —498+0.04BFIconter +0.18BFIyig ¢ —0.92-BLT conter

Pgeometry = 1 + o +98+0.04 BFIenter +0.18'BFIyig 1t —0.92BLTcenter
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Logit Model Sensitivity Analysis — P(Rprof)
vs BFI R: 3-D Plot
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Statistical Validation

True condition
» Confusion Matrix Total
. population | Condition positive Condition negative
— 29 false positives Predicted
. .. condition 213 29
— 4 missed positives Predicted | _positive
condition | Predicted
* Overall accuracy condition a 7
. . negative
— 87% matched prediction Accuracy

86.96%

False Positive Rate

True positive rate
a (FPR), probability of

(TPR), Sensitivity

false alarm
98.16% 80.56%
False negative rate True negative rate

(FNR), Miss rate (TNR), Specificity (SPC)

1.84% 19.44%
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Practical Use

« Constant Probability as a
function of condition 400
— Ballast Fouling Index Right
— Ballast Layer Thickness
Center 250
» Shows combination of
ballast layer thickness and
ballast fouling index right
at which a defined
probability of a right profile
—62>0.4 (10 mm) will
oCcCur.

BFI Rvs BLT C

5 10 15 20 25 30 35 40 45 50
BFI R

10% 25% ——50% ——75% ——90%



