

EFFECTIVE USE OF PAVEMENT CONDITION DATA FOR FORECASTING, REPORTING, AND DECISION MAKING

ADITYA RAMACHANDRAN, PAVEMENT MANAGEMENT CONSULTANT THE KERCHER GROUP, INC. / MDOT SHA

OUTLINE

MDOT SHA Highway Network

Condition Data – State and HPMS metrics

Data Analytics – Optimization

- State Optimization
- Federal Optimization (MDOT TAMP)

Reports

- Optimization Reports
- MDOT SHA System Preservation Report
- HPMS Report

MDOT SHA HIGHWAY NETWORK

MDOT SHA maintains

- 17,210 lane miles (as of Jan 2019) 14,837 mainline LM (7629 LM is NHS)
- 63% flexible pavements (AC only)
- 36% composite pavements (AC over PCC)
- I% rigid pavements (JPCP/JRCP/CRCP)

Geographical divisions

- 23 Counties
- 7 Districts
- 3 Regions (Mountainous, Central, Coastal)

OUTLINE

MDOT SHA Highway Network

Condition Data - State and HPMS metrics

Data Analytics – Optimization

- State Optimization
- Federal Optimization (MDOT TAMP)

Reports

- Optimization Reports
- MDOT SHA System Preservation Report
- HPMS Report

CONDITION DATA

Surface Type	State PMS	Federal Requirements				
All Pavements	International Roughness Index (IRI) (average, in/mile)	IRI (average, in/mile)				
Asphalt	Structural Cracking Density (extent of cracking on wp) / total area	Cracking Percent – AC (length of cracking on wp) / wp_area				
	Functional Cracking Density (extent of cracking outside wp) / total area					
	Rut Depth (average, inches)	Rut Depth (average, inches)				
	Friction (speed adjusted skid number)	None				
Jointed Concrete	Structural Cracking Density (%cracked slabs)	Cracking Percent - JCP (%cracked slabs)				
	Functional Cracking Density (faulting)	Faulting (right wp)				
Continuously Reinforced	Structural Cracking Density (punchouts + long. cracking area)	Cracking Percent - CRCP (punchouts + long. cracking + asphalt and				
^k Concrete	Functional Cracking Density (asphalt and concrete patches area)	concrete patches area)				

OUTLINE

MDOT SHA Highway Network

Condition Data – State and HPMS metrics

Data Analytics – Optimization

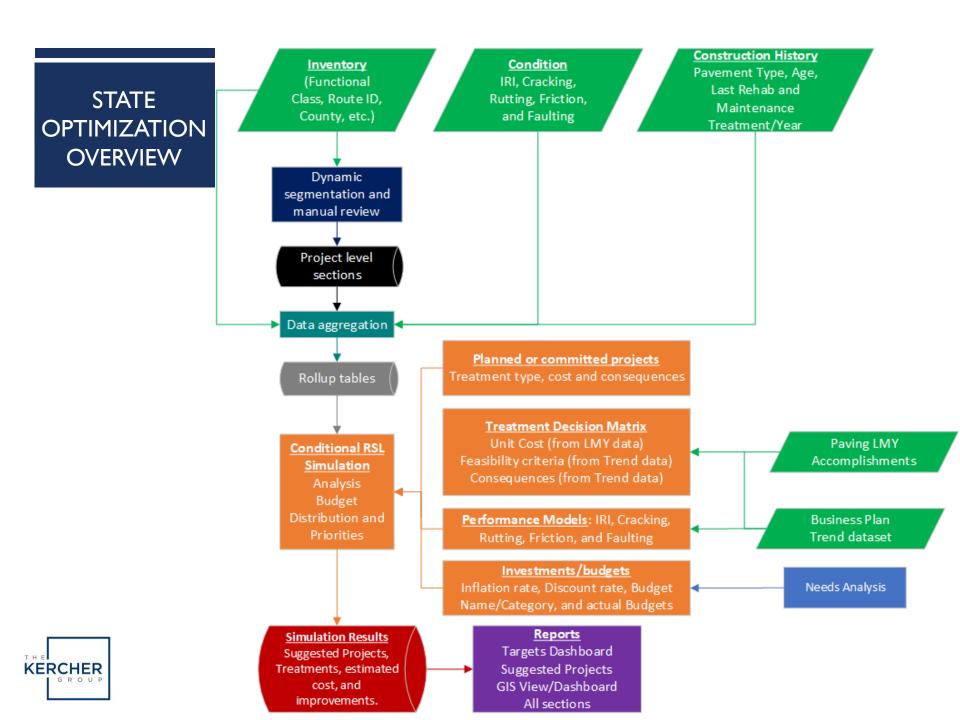
- State Optimization
- Federal Optimization (MDOT TAMP)

Reports

- Analytics Reports
- MDOT SHA System Preservation Report
- HPMS Report

DATA ANALYTICS - OPTIMIZATION

- Why Optimization?
 - To arrive at a feasible network program that meets all input constraints at a minimum cost.
 - Data-driven decision making (right fix for the right road at the right time).
 - Enable Districts meet annual goals.
 - Provide cost-effective project suggestions to
 - extend pavement life and
 - obtain best return on investment (ROI).



DATA ANALYTICS - OPTIMIZATION

- Optimization developed in close collaboration with the Districts.
- We seek inputs from Districts on
 - Treatment feasibility and budgets
 - Availability of Contractors and Contract authority
 - Planned projects
 - Assign Innovation Budgets
- Incentivize Districts that meet performance targets, specifically PM targets.

DYNAMIC SEGMENTATION

Sections with identical construction history & condition.

split: any change in ownership

split: any committed project

split: any PCC (concrete sections)

split: any long bridge (bridge >= 0.25 mile)

split: any pavement change

split: any significant change in cracking condition

section length: Min 0.5 miles, Max 6 miles

Manual review follows dynamic segmentation.

NEEDS ANALYSIS/ASSESSMENT

- Required to justify the annual construction funding allocation as revenue and budget forecasts are subject to fluctuation.
- E.g. How much money is needed to maintain current conditions?
- What is the forecasted pavement condition using reasonably available funding?
- How much money is needed to attain MDOT SHA's business plan goal in 10 years?

SIMULATION INPUTS

Analysis Priorities

• e.g. Min. Budget per Shop.

Investment/Budget

• System Preservation Budget by District and Treatment type.

Performance Models

Treatments

- Feasibility defines when a treatment can occur.
- Cost defines total project cost for a treatment.
- Consequences what happens after a treatment is placed.

Committed projects / Planned projects

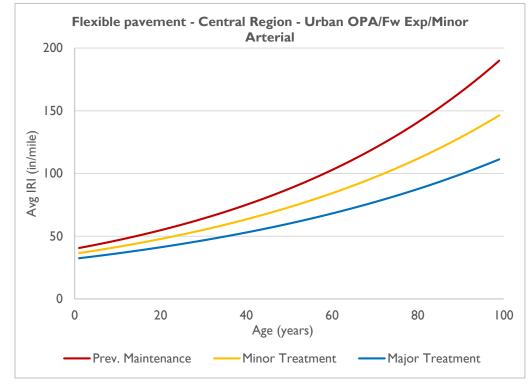
PERFORMANCE MODELS

Model Specifications

Condition Metric	Model Specification
IRI	Exponential
Cracking Percent/Crack Density	Sigmoidal/S-shape
Friction	Linear
Rutting	Linear
Faulting	Linear

- Family Models
- Updated annually to incorporate changes in trend from most recent collected data
- Cracking is the fastest deteriorating measure

IRI MODELS

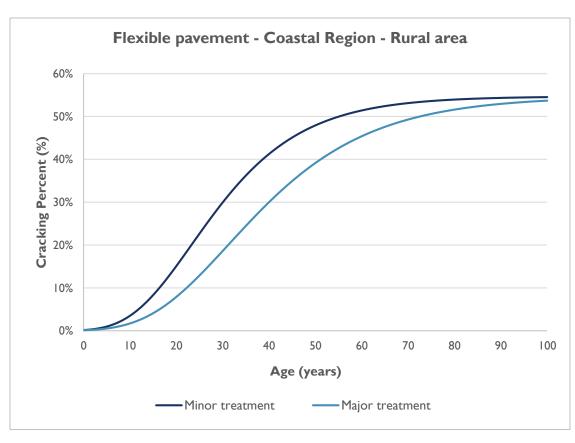


$IRI_{predicted} = IRI_{initial} m_1 e^{age m_1 m_2}$

• 35 families (m_1) * 28 treatments (m_2) = 908 models

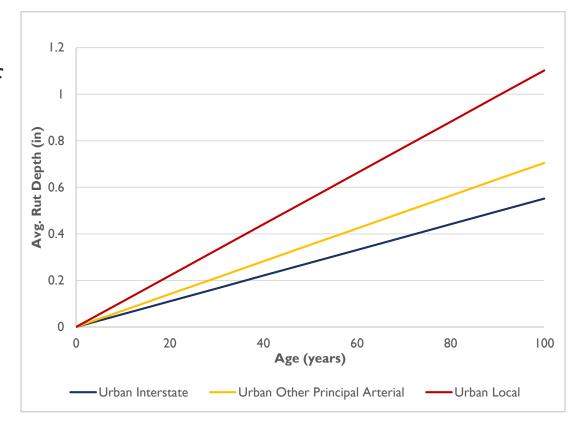

• $m_1 \rightarrow treatment$ multiplier

- $m_2 \rightarrow$ function of
 - Pavement Type
 - Region
 - Functional Class


CRACKING PERCENT (ASPHALT)

$$\%Crk_{ASPHALT} = \frac{6.56 \exp(-\exp(\beta_o + \beta_1 AGE))}{W}$$

- Region
 - Coastal
 - Central/Mountain
- Area (F_System)
 - Rural
 - Urban
- Treatment
 - Preventive Maint.
 - Minor
 - Major



RUTTING MODELS

$Rut_{predicted} = a_1 \ age \ Rut_{initial}$

- a₁ is a function of
 - Functional Class
 - Pavement Type
- 34 families

SIMULATION INPUTS

Analysis Priorities

• e.g. Min. Budget per Shop.

Investment/Budget

• System Preservation Budget by District and Treatment type.

Performance Models

Treatments

- Feasibility defines when a treatment can occur.
- Cost defines total project cost for a treatment.
- Consequences what happens after a treatment is placed.

Committed projects / Planned projects

TREATMENTS

- 30+ Treatments
 - Preventive Maintenance (Patching, Crack Seal etc.)
 - Minor Rehabilitation e.g. Overlay <=1.5" Grade Increase
 - Major Rehabilitation / Structural Overlay
 - Reconstruction
- Feasibility / Decision tree
- Cost Unit Cost (\$/Lane Mile)

Improvements or Consequences

TREATMENT DECISION TREE: PAVEMENT DESIGN

	Treatment	ADT	IRI	SCD	FCD	FN	RUT
A. Crack/ Joint Seal	CRACK SEAL		<=170	<5	<=10	>40	
B. Asphalt	FOG SEAL	<=25000	<=100	<5	<=10	>40	
Rejuvenator	REJUVENATOR	<=25000	<=100	<5	<=10	>40	
	CAPE SEAL	<=25000	<=170	<5			<=
C Aggregate Soals	CHIP SEAL	<=4000	<=100	<5			<0.5
C.Aggregate Seals	MICRO SURFACING		<=100	<5	<=10		<=
	SAND SEAL	<=25000	<=100	<5	<=10		
	MILL-ULTRATHIN BONDED WEARING						
	COURSE			<5			<=
	ULTRATHIN BONDED WEARING COURSE		<=170	<5	<=10		<0.5
D. Asphalt Overlay	MILL-OVERLAY <= 1.5IN GRADE INCREASE			<25			
	MILL-OVERLAY > 1.5IN GRADE INCREASE						
	OVERLAY <= 1.5IN ASPHALT		<=170	<5			<0.5
	OVERLAY > 1.5IN ASPHALT		<=170				
E. PCC Overlay	BONDED PCC OVERLAY			>=25			
E. PCC Overlay	UNBONDED PCC OVERLAY			<25			>=0.5
F. Spot Repair	ASPHALT PATCH ONLY			<25			
G. Surface	DIAMOND GRINDING			<5			>=0.5
Texturizing	SURFACE ABRASION		<=170	<5		<=40	<0.5
	COLD-IN-PLACE RECYCLING-OVERLAY			>=25			
H. Major Rehab	BREAK-CRACK-SEAT-OVERLAY			>=25	>10		
	RUBBILIZATION-OVERLAY			>=25	>10		
I Posonstruction	RECONSTRUCTION			>=25			
I. Reconstruction	FULL-DEPTH RECLAMATION-OVERLAY			>=25			

TREATMENT DECISION TREE - PMS OPTIMIZATION EXAMPLE

Treatment Name	Curb	Lane Miles	Func Class	Surface Type	Pavement Type	ADT	AVG IRI		FCD	FN	AVG RUT	Min Age
ULTRATHIN BONDED WEARING		'			Flexible &	'			>2 and	'		>=5 and
COURSE	Open	>=2	All	Asphalt	Composite	<=100,000	<=170	<=7	<=10	All	<0.5	<=15
		'	Not		Flexible &	<u>'</u>						
	Any	All	1,11,12	Asphalt	Composite	All	All	<25	All	All	>1	6
]		,	Not		Flexible &	,						
1	Any	All	1,11,12	Asphalt	Composite	All	>170	<25	All	All	<=1	6
MILL-OVERLAY <=1.5IN GRADE			Not		Flexible &	,		>=5 and				
INCREASE	Any	All	1,11,12	Asphalt	Composite	All	<=170	<25	All	All	All	6
/		<u> </u>	Not		Flexible &	,				7		
1	Any	All	1,11,12	Asphalt	Composite	All	<=170	<25	>=10	All	All	6
1		'	Not		Flexible &	,						
<u> </u>	Closed	All	1,11,12	Asphalt	Composite	All	All	<25	All	All	All	6
Î		'	1,2,11,12,1		Flexible &	,						
ASPHALT PATCH ONLY	Any	All	4	Asphalt	Composite	All	<=170	<25	All	All	All	4
<u>.</u>		'	6,7,8,9,16,		Flexible &	,						
<u>'</u>	Any	All	17,18,19	Asphalt	Composite	All	All	<25	All	All	All	4
DECONSTRUCTION		'			1	'				'		
RECONSTRUCTION	Any	All	All	All	All	All	All	>=25	All	All	All	8

Interstates and Urban OPA Fwys/Expwys – use Gap graded mix

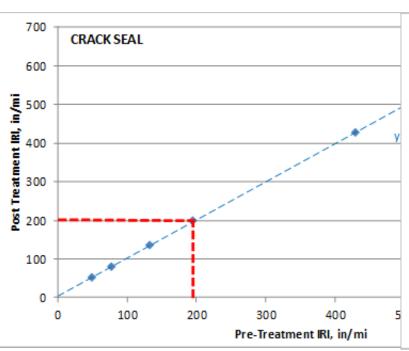
TREATMENT COST

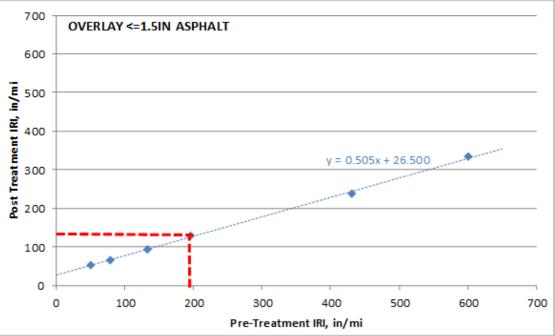
- Treatment Cost will vary based on various parameters like District, Road Class, Functional Class category, and existing condition.
- Unit cost data is obtained from completed projects.

Treatment	Unit Cost (\$/LM)
Asphalt Patch Only	\$40,000
Crack Seal	\$7,000
Overlay <= 1.5in Asphalt	\$152,000
Surface Abrasion	\$21,000
Micro Surfacing	\$54,000
Mill-Overlay <= 1.5in Grade Increase - Gap	\$300,000
Mill-Overlay <= 1.5in Grade Increase	\$230,000
Chip Seal	\$35,000
Mill-Ultrathin Bonded Wearing Course	\$160,000

TREATMENT CONSEQUENCES

Treatment	Consequence
Crack Seal/Fill	Improves functional cracking condition; No structural benefit
Micro surfacing	Fills minor wheel ruts. Also improves friction.
Chip Seal	Low cost, improves friction, slows cracking; Cracked windshields
HMA Overlay	Moderately improves all measures, unless pavement is failed; More expensive than preventive maintenance.


MDOT SHA Pavement and Geotechnical Design Guide: Section 2.09 Supplemental Treatment Information


https://www.roads.maryland.gov/Index.aspx?PageId=I2

TREATMENT CONSEQUENCES - IRI

TREATMENT CONSEQUENCES/IMPROVEMENTS CRACKING & RUTTING

Crack Seal

 $FC\ Density_{after} = 0.7\ FC\ Density_{before}$ $SC\ Density_{after} = No\ Change$ $Rutting_{after} = No\ Change$ $Age_{after} = 1 + Age_{before}$

Overlay <= 1.5" Grade Increase

 $FC\ Density_{after} = 2.0$ $SC\ Density_{after} = 0.6$ $Rutting_{after} = 0.2842\ Rutting_{before}$ $Age_{after} = 0$

OUTLINE

MDOT SHA Highway Network

Condition Data – State and HPMS metrics

Data Analytics – Optimization

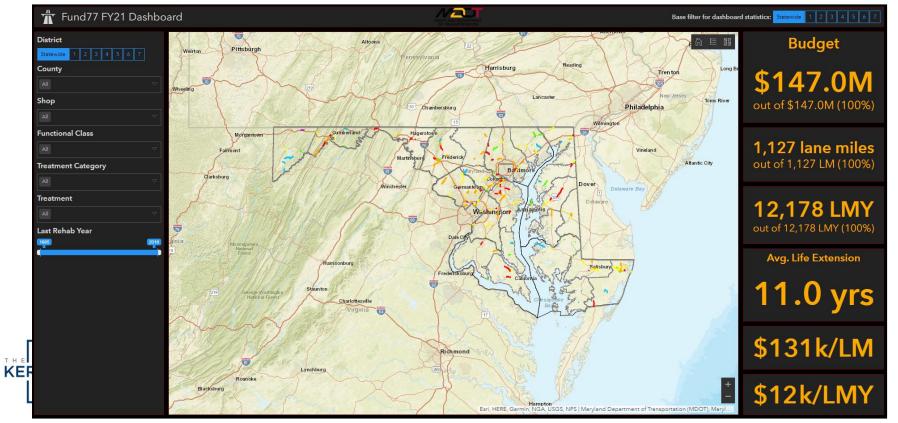
- State Optimization
- Federal Optimization (MDOT TAMP)

Reports

- Optimization Reports
- MDOT SHA System Preservation Report
- HPMS Report

OPTIMIZATION REPORTS

- Targets and Suggested Projects
 - Statewide and by District (Set Benefit Targets)


Fund 77 FY21 Target Summary - Statewide

Targets:	Budget	Benefit (LMY)	Suggested Lane-Miles	Estimated \$/LM	Average Life Extension	\$/LMY	% of Overall \$
	\$147,030,000	12,178	1,127	\$130,501	11	\$12,073	
Preventive Maintenance involving UTBWC	\$9,562,515	703	53	\$181,054	13	\$13,611	6.5%
Preventive Maintenance (other)	\$20,251,927	3,127	542	\$37,333	6	\$6,476	13.8%
Minor Rehabilitation	\$113,819,107	8,140	520	\$218,750	16	\$13,982	77.4%
Structural Overlay	\$3,009,854	204	10	\$286,905	19	\$14,765	2.0%
Major Rehabilitation	\$386,598	5	1	\$668,855	8	\$83,607	0%
Reconstruction	\$0	0	0	\$0	0	\$0	0%

				Suggested		Average Life	
Pre Treatment	RSL Categories:	Budget	Benefit (LMY)	LM	\$/LM	Extension	\$/LMY
40 to 50 years	А	\$78,035	19	9	\$8,306	2	\$4,153
30 to <40 years		\$1,744,911	247	104	\$16,711	2	\$7,057
20 to <30 years	С	\$3,155,264	391	94	\$33,503	4	\$8,062
10 to <20 years	D	\$32,733,074	2,526	283	\$115,518	9	\$12,958
<10 years	Е	\$66,587,542	5,002	392	\$169,840	13	\$13,311
0 years	F	\$42,731,174	3,993	243	\$175,667	16	\$10,703

	Targets:	Durdona	D 6:4 /1 0 (1)/\	Suggested	Estimated \$/LM	Average Life	S/LMY	% of Overall
	rargets.	Budget	Benefit (LMY)	Lane-Miles	Estimated \$/LIVI	Extension	\$/LIVIY	% of Overal
		\$147,030,000	12,178	1,127	\$130,501	11	\$12,073	
	Preventive Maintenance involving UTBWC	\$9,562,515	703	53	\$181,054	13	\$13,611	6.5%
	Preventive Maintenance (other)	\$20,251,927	3,127	542	\$37,333	6	\$6,476	13.8%
	Minor Rehabilitation	\$113,819,107	8,140	520 10	\$218,750	16	\$13,982	77.4%
	Structural Overlay	\$3,009,854	204		\$286,905	19	\$14,765	2.0%
	Major Rehabilitation	\$386,598	5	1	\$668,855	8	\$83,607	0%
	Reconstruction	\$0	0	0	\$0	0	\$0	0%
	reatment RSL Categories:	Budget	Benefit (LMY)	Suggested LM	\$/LM	Average Life Extension	\$/LMY	
40 to 50 years		\$78,035	19		\$8,306		\$4,153	
20 to <30 years	c	\$3,155,264	391	94	\$33,503	4	\$8,062	
10 to <20 years	D)	\$32,733,074	2,526	283	\$115,518	9	\$12,958	
<10 years	E	\$66,587,542	5,002	392	\$169,840	13	\$13,311	
0 years	F	\$42,731,174	3,993	243	\$175,667	16	\$10,703	
Γ	20000000			Suggested	Market .	Average Life]
	District	Budget *	Benefit (LMY)	LM =	\$/LM ~	Extension *	\$/LMY	
	1	\$14,768,554	1,622	161	\$91,843	10	\$9,106	
	2	\$14,817,758	1,421	123	\$120,356	12	\$10,431	-
	3	\$36,685,447	2,419	262	\$140,024	9	\$15,164	
	4	\$19,949,701	1,481	140	\$142,364	11	\$13,468	-
	5	\$27,306,827	2,473	163	\$167,256	15	\$11,042	
	6	\$12,435,080	1,204	128	\$97,065	9	\$10,326	1
	7	\$21,066,633	1.558	149	\$141.157	10	\$13,518	

SUGGESTED PROJECTS REPORT

Detailed Project Summary - FY20 Suggested projects

See "Lookup 8	Notes" works	heet for notes							
Google Maps	VideoLog ▼	District -	County	Shop	Contract Type	Prefix 🔻	Route#	Suffix	Beg
Google Maps	♦ 'ideoLog	1	DO	Cambridge	Microsurface	US	50		0
Casala Massa	Affair and	- 1	20	Complexision	Applied & Devices	NAD	212		7

Google Maps	VideoLog	District	County	Shop	Contract Type	Prefix	Route#	Suffix	Begin MP	End MP	Direction
•	_	_	_	_	▼	_	-	•	-	-	-
Google Maps	⊕ <mark>′ideoLog</mark>	1	DO	Cambridge	Microsurface	US	50		0.61	2.7	EB Only
Google Maps	VideoLog	1	DO	Cambridge	Asphalt Paving	MD	313		7.92	8.44	All Dir
Google Maps	VideoLog	1	DO	Cambridge	Asphalt Paving	MD	750		0	0.87	All Dir
Google Maps	VideoLog	1	DO	Cambridge	Asphalt Paving	US	50		4.65	6.71	EB Only
Google Maps	<u>VideoLog</u>	1	SO	Princess Anne	Asphalt Paving	MD	673	А	0	0.53	All Dir
Google Maps	<u>VideoLog</u>	1	SO	Princess Anne	Asphalt Paving	US	13		6.3	7.1	SB Only
Google Maps	VideoLog	1	SO	Princess Anne	Asphalt Paving	phalt Paving MD			0	0.97	All Dir
Google Maps	<u>VideoLog</u>	1	SO	Princess Anne	Asphalt Paving	ving US 13			19.58	20.17	SB Only
Google Maps	<u>VideoLog</u>	1	WI	Salisbury	Chip Seal	MD	350		0.18	6.63	All Dir
Google Maps	VideoLog	1	WI	Salisbury	Crack Seal	US	50		27.06	30.695	WB Only
Google Maps	<u>VideoLog</u>	1	WI	Salisbury	Asphalt Paving	US	13	BU	4.17	8.137	All Dir
Google Maps	<u>VideoLog</u>	1	WI	Salisbury	UTBWC	US	13	BU	1.34	3.87	NB Only
Google Maps	<u>VideoLog</u>	1	WI	Salisbury	Asphalt Paving	MD	346		0.67	1.2	All Dir
Google Maps	<u>VideoLog</u>	1	WI	Salisbury	Asphalt Paving	US	50		0	0.75	WB Only
Google Maps	VideoLog	1	WI	Salisbury	Asphalt Paving	MD	MD 992		0	0.74	All Dir
Google Maps	<u>VideoLog</u>	1	WO	Snow Hill	Asphalt Patching	MD	MD 378		0	1.49	All Dir
Google Maps	VideoLog	1	WO	Snow Hill	Crack Seal	MD	374		8.02	8.7	All Dir
Google Maps	VideoLog	1	WO	Snow Hill	Crack Seal	MD	90		7.78	8.42	WB Only

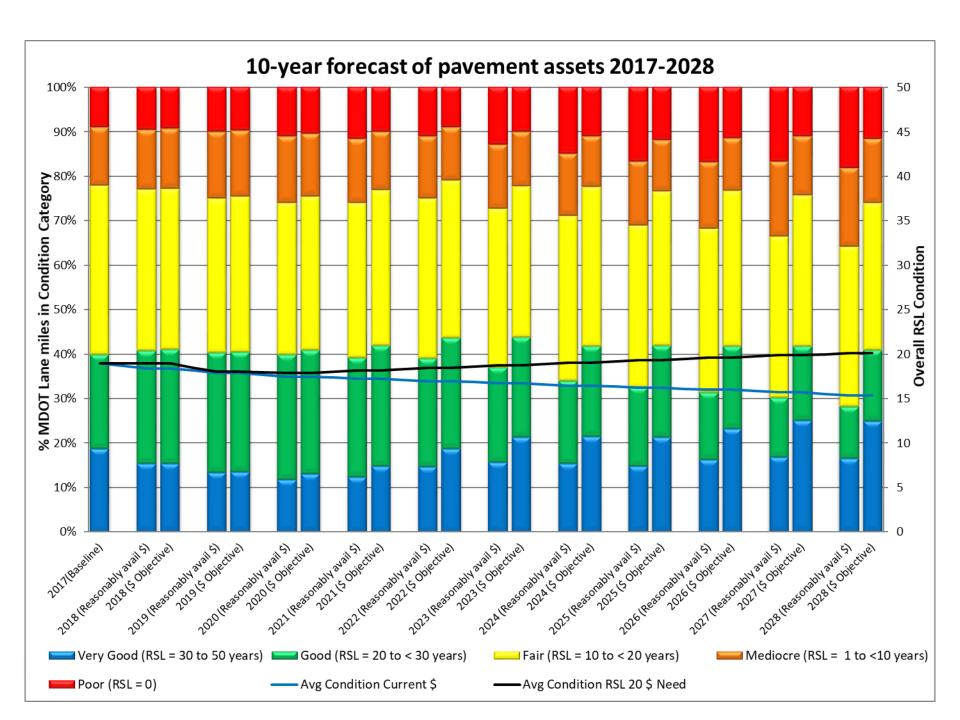
OPTIMIZATION REPORTS...

Targets are reviewed based on the following:

Compare average treatment unit cost (UC) with historical UC data and contractor bid data.

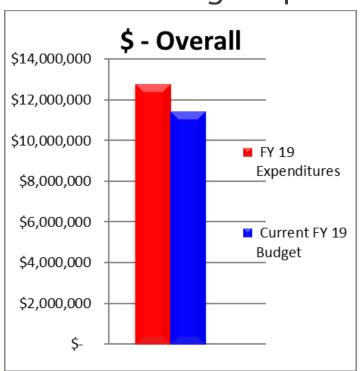
Suggested treatment lane miles should be contract worthy.

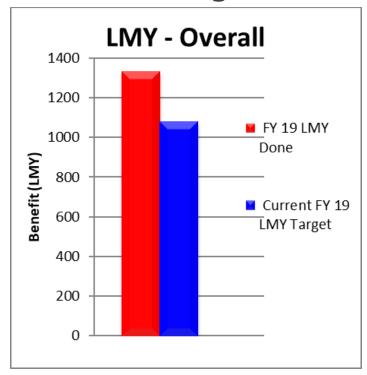
Predicted treatment life extension should be within the range of expected values.

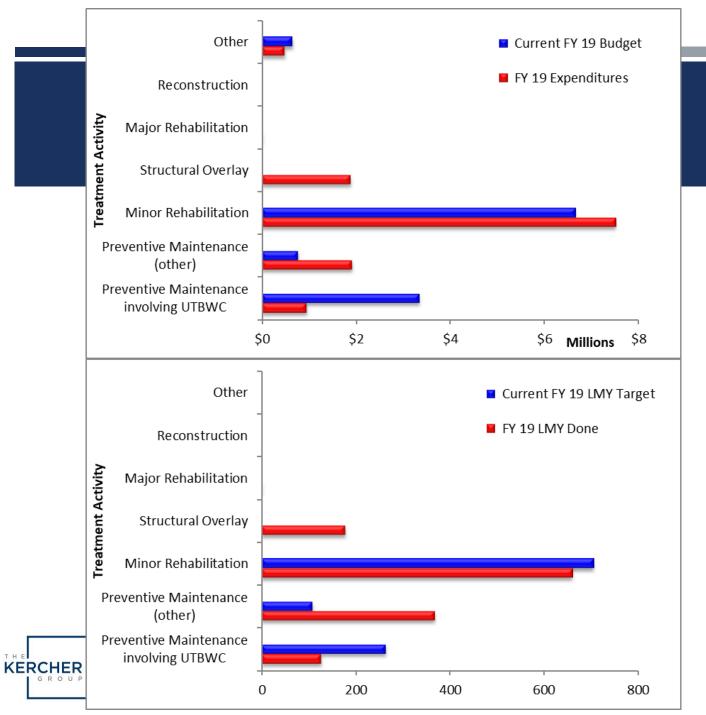


OPTIMIZATION REPORTS (ALL SECTIONS)

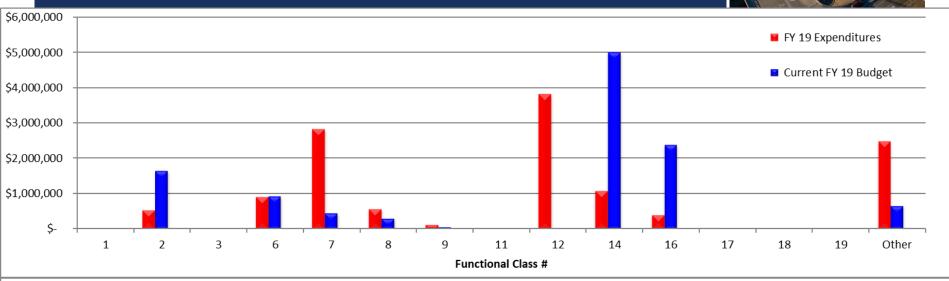
- Historical and future pavement conditions.
- Feasible treatments, cost, life extension, benefit (LMY) and cost/benefit ratio (\$/LMY) by section.
- Data discovery tool to identify project candidates.

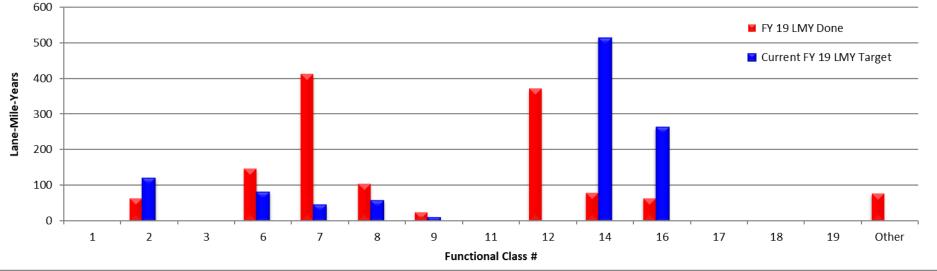

YEAR	VIDEOLOG	GOOGLE MAPS	ROUTE	ВМР	EMP	DIR	IRI RSL	FCD RSL	SCD RSL	RUT RSL		RSL OVERALL	TREATMENT_RANK_1
2011						ALL	43	40	40	41	49	40	<u> </u>
2011	VideoLog VideoLog	Google Maps Google Maps		0		ALL	43	32	40	33			
2012		Google Maps		0		ALL	43	37	44	41			
2013		Google Maps		0		ALL	43	30	43	40			
2014		Google Maps		0		ALL	42	32	41	37			
2015		Google Maps		0		ALL	42	36	37	42			
2010		Google Maps		0		ALL	42	34	33	42			CHIP SEAL
2017		Google Maps		0		ALL	41	30	28	40			CHIP SEAL
2019		Google Maps		0		ALL	40	27	20	39			MILL-OVERLAY <=1.5IN GRADE INCREASE
2019		Google Maps		0		ALL	39	27	19	38			MILL-OVERLAY <=1.5IN GRADE INCREASE MILL-OVERLAY <=1.5IN GRADE INCREASE
2021		Google Maps		0		ALL	38	20	17	37	50		MILL-OVERLAY <=1.5IN GRADE INCREASE
2021	VideoLog	Google Maps		0		ALL	37	19	15	37			MILL-OVERLAY <=1.5IN GRADE INCREASE
2022	VideoLog	Google Maps		0		ALL	36	18	13	36			MILL-OVERLAY <=1.5IN GRADE INCREASE
2023		Google Maps		0		ALL	35	16	10	35			MILL-OVERLAY <=1.5IN GRADE INCREASE
2024	VideoLog	Google Maps		0		ALL	33	15	10	34			UNBONDED PORTLAND CEMENT CONCRETE OVERLAY
				0				13	1	33			
2026		Google Maps		0		ALL	32		1				UNBONDED PORTLAND CEMENT CONCRETE OVERLAY
2027	<u>VideoLog</u>	Google Maps	DO-MD 14	0	3.7	ALL	31	11	0	32	47	0	UNBONDED PORTLAND CEMENT CONCRETE OVERLAY


TRACK \$ & PAVING ACCOMPLISHMENTS


112% of Budget spent

124% of Target Met





TRACK \$ & PAVING ACCOMPLISHMENTS

OUTLINE

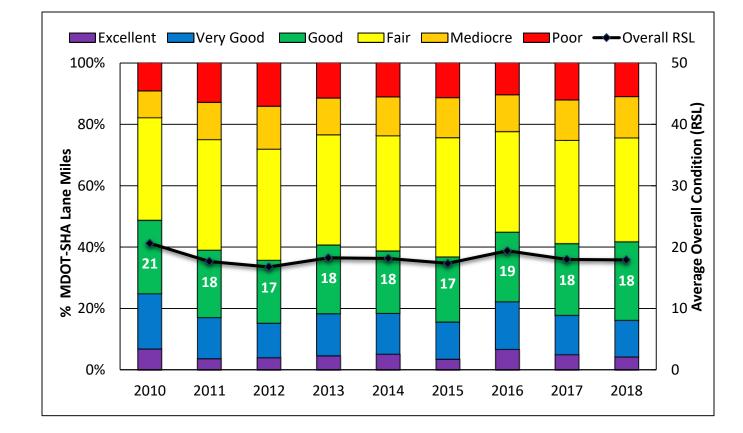
MDOT SHA Highway Network

Condition Data – State and HPMS metrics

Data Analytics – Optimization

- State Optimization
- Federal Optimization (MDOT TAMP)

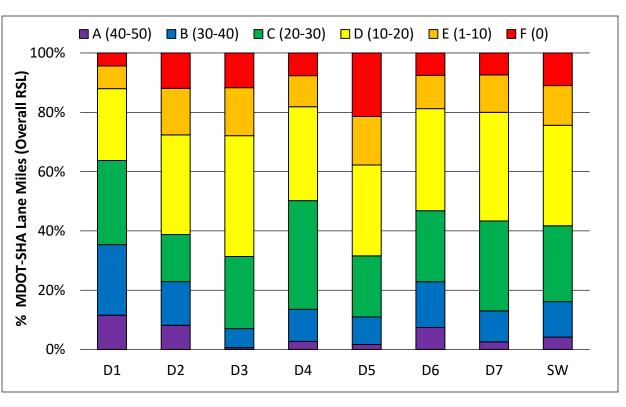
Reports


- Analytics (Optimization) Reports
- MDOT SHA System Preservation Report
- HPMS Report

MDOT SHA SYSTEM PRESERVATION REPORT

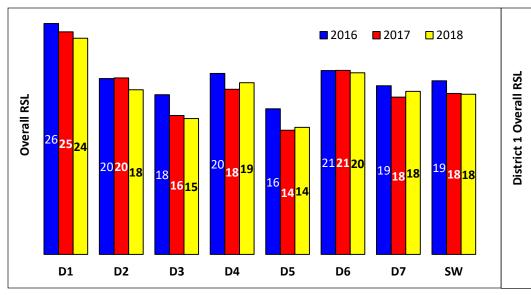
- Documents condition and paving accomplishments
- Published annually Statewide & District reports

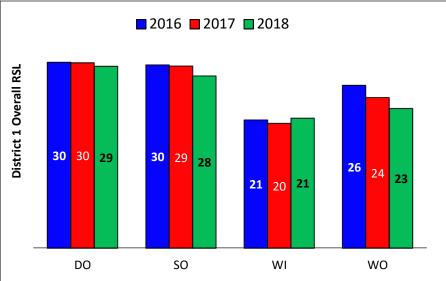
% Lane-Milesby OverallRSLPerformance



MDOT SHA SYSTEM PRESERVATION REPORT...

% Lane-Milesby Overall RSLPerformanceDistrict& Statewide

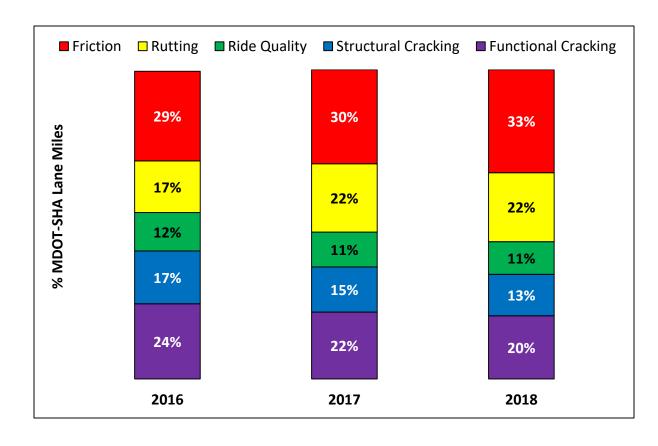

MDOT SHA SYSTEM PRESERVATION REPORT...



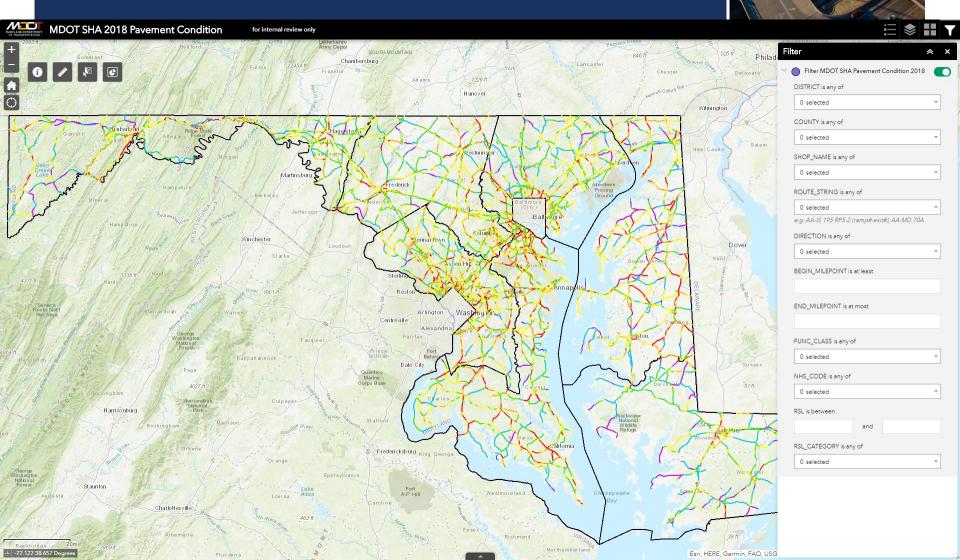
Overall RSL by District &

Overall Statewide RSL

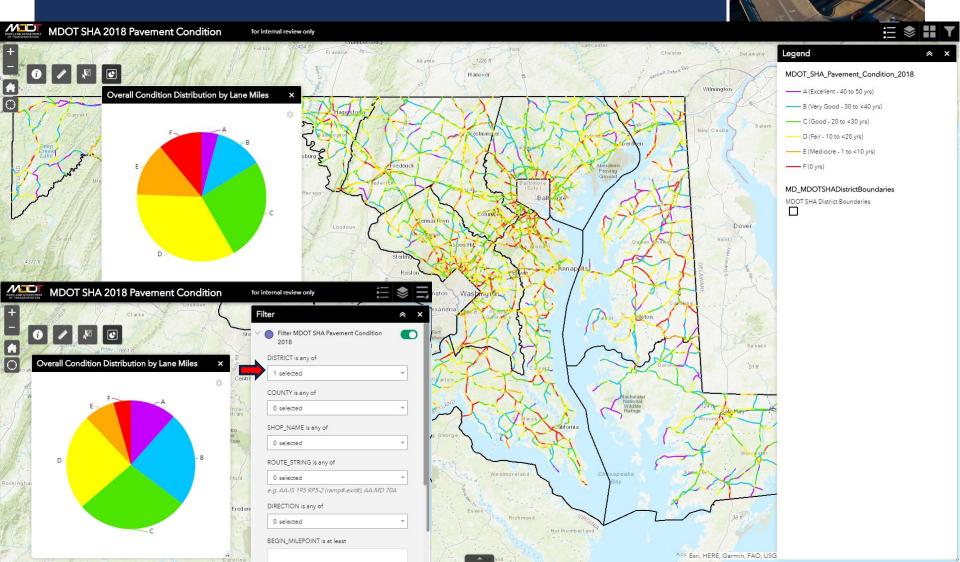
Overall RSL by County

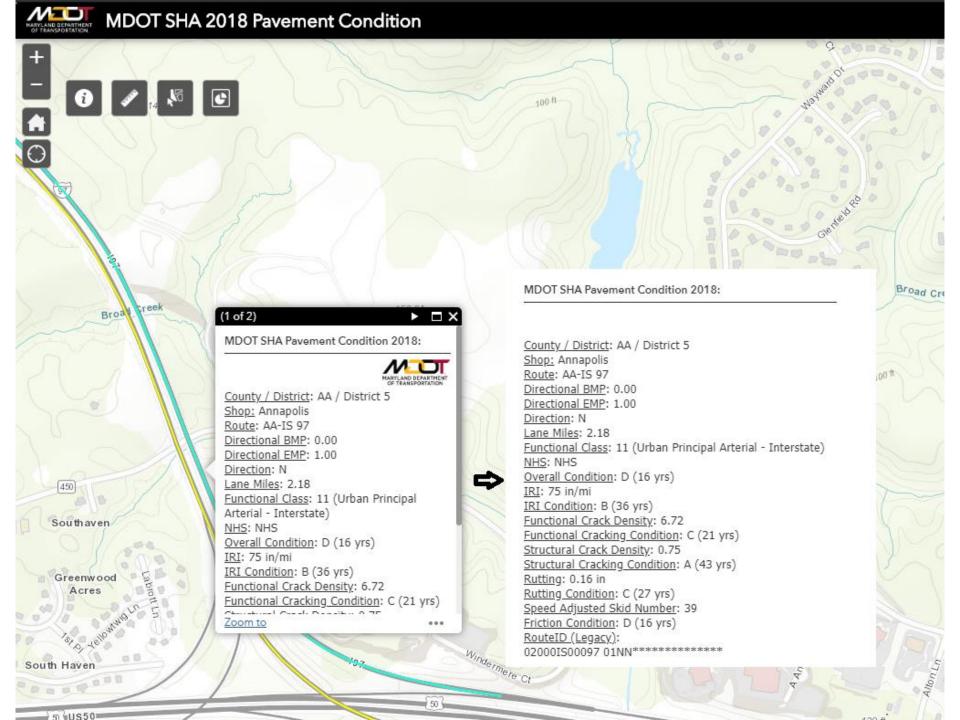


MDOT SHA SYSTEM PRESERVATION REPORT...



Distribution of controlling performing measures





CONDITION DATA REPORTING: AGOL WEB APPLICATION

CONDITION DATA REPORTING : AGOL WEB APPLICATION...

OUTLINE

MDOT SHA Highway Network

Condition Data – State and HPMS metrics

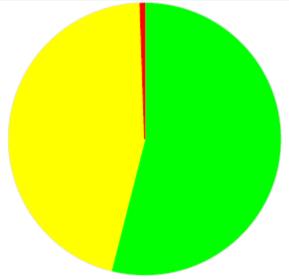
Data Analytics – Optimization

- State Optimization
- Federal Optimization (MDOT TAMP)

Reports

- Analytics (Optimization) Reports
- MDOT SHA System Preservation Report
- **HPMS** Report

HPMS REPORT - INTERSTATE


HPMS 8.0.1

FULL EXTENT LANE MILES RATING (INTERSTATE)

Stage: Submit Year: 2018

State: 24 - Maryland Date: 06/07/2019

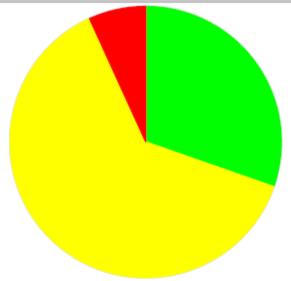
LANE MILES FULL EXTENT GOOD	1,425.818
LANE MILES FULL EXTENT FAIR	1,201.663
LANE MILES FULL EXTENT POOR	14.375
TOTAL LANE MILES GOOD, FAIR OR POOR	2,641.856
ESTIMATED TOTAL INTERSTATE LANE MILES MISSING OR INVALID DATA	4.943
TOTAL LANE MILES GOOD, FAIR, POOR, MISSING OR INVALID DATA	2,646.799
% ESTIMATED TOTAL INTERSTATE LANE MILES MISSING OR INVALID DATA - LIMIT 5%*	0.2 %

LANE MILES FULL EXTENT GOOD (54.0%)

LANE MILES FULL EXTENT FAIR (45.5%)

■ LANE MILES FULL EXTENT POOR (0.5%)

HPMS REPORT - NON INTERSTATE NHS


HPMS 8.0.1

FULL EXTENT LANE MILES RATING (NON-INTERSTATE NHS)

Stage: Submit Year: 2018

State: 24 - Maryland Date: 06/07/2019

LANE MILES FULL EXTENT GOOD	1,923.393
LANE MILES FULL EXTENT FAIR	3,982.474
LANE MILES FULL EXTENT POOR	431.214
TOTAL LANE MILES GOOD, FAIR OR POOR	6,337.081
ESTIMATED TOTAL NON-INTERSTATE NHS LANE MILES MISSING OR INVALID DATA	85.446
TOTAL LANE MILES GOOD, FAIR, POOR, MISSING OR INVALID DATA	6,422.527
% ESTIMATED TOTAL NON-INTERSTATE NHS LANE MILES MISSING OR INVALID DATA - LIMIT 5%*	1.3 %

- LANE MILES FULL EXTENT GOOD (30.4%)
 LANE MILES FULL EXTENT FAIR (62.8%)
- LANE MILES FULL EXTENT POOR (6.8%)

PLANNED EFFORTS

- Promote Pavement Preservation Acceptance.
- Continue to Incentivize Districts that meet performance targets, specifically PM targets.
- Just-in-Time (JIT) trainings, educational and training materials for Districts.
- Update specifications based on lessons learned, implementation of best practices in construction and design, feedback from peer exchanges.

QUESTIONS?

Contact Info:

Aditya Ramachandran, Pavement Management Consultant The Kercher Group, Inc. / MDOT SHA <u>aramachandran@kerchergroup.com</u> <u>aramachandran@mdot.maryland.gov</u>

