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Taxonomy of Big Data
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Classification of Track Vertical Defects Upon their
Wavelengths (Salvador et al.,2016)

Type of defect Classification Wavelength Examples of defects
range (m)
Rail  joints, very short
Very short 0.03-0.06  wavelength rail corrugation,
Rail corrugation small squats
and isolated rail Short 0.06=0.25 Short wavelength rail corru-
defects ' ’ gation, medium size squats
Medium  wavelength rail
Medium 0.25-0.60  corrugation, large squats,
turnout frogs
Long 0.60-2 Lon.g wavelength r.all corru-
gation, ballast fouling
Short .95 Changes on track vertical
stiffness
Loss of track Medi | b cal
vertical alignment Medium 25-70 .e 'Elm wavelength vertica
misalignment
Long 70-120 Long wavelength vertical

misalignment




Comparison Between Fourier, Wavelet and Hilbert-Huang
Transform (HHT)

Fourier Wavelet HHT?
Basis A priori A priori Adaptive
Convolution: Convolution:  re- Differentiation:
Frequency

Presentation

Nonlinear
Nonstationary
Feature Extraction
Theoretical Base

global, uncertainty
Energy-frequency

Not easily defined
No

No

Theory complete

gional, uncertainty
Energy time-
frequency

Not easily defined
Yes

Yes

Theory complete

local, certainty
Energy time-
frequency

Not easily defined
Yes

Yes

Empirical

2N. E. Huang and N. O. Attoh-Okine, The Hilbert-Huang Transform in
Engineering. CRC Press, 2005.
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Case Studies



Track Geometry Degradation Model:

0s =01+ 6t +¢
Where:

e 0, : Standard deviation of
surface (in)

01 : Intercept (in)

05 : Degradation rate
(in/month)

t: Time (months)

¢ : White noise ~ N(0, s)

Linear Representation

Restoration Restoration
(Tamping) (Tamping)

_______________ — Intervention
Threshold

~_ Reached Roughni
after Restoration

Time (years)
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Track Geometry Degradation-Shock Model Representation®
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3Soleimanmeigouni et al.,2016
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Predictive Model in Track Geometry Degradation:
Stochastic Process?

25
W(t) :CUO+/,Lt+O'B(t) Failure time
2
Where: « Failure threshold
e W (t): Degradation at time ¢ g T
e wo: Initial degradation i%
e 1: Deterioration rate (drift £
parameter) ol |
e ¢: Diffusion coefficient beaidioeamtipe
e B(t): Standard Brownian 0 F——r— =

Time

motion

“Silvia A. Galvan-Nufiez, University of Delaware
13



Parameter Estimation: Markov Chain Monte Carlo

Prior Distribution

f(@

f®

Likelihood
f(MGT|8)

—>f

Bayesian Updating

f(OIMGT) =

Where:

6 =[a,p]

- Metropolis-Hasting Algorithm

£(0) - f(MGT|0)
[7(8) - F(MGT|0)do

- Gibbs Sampling Algorithm

—

I

Dataset
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Posterior Distribution
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B
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Mutation

ICurrent population I . New population | .

Mutate

X = {x1, X3, X3, X4 } y = {x1,%2,¥3, X4}

,,,,,,,,,,,,,,,,,,

The new population y is accepted with probability min(1,r,,)
according to the Metropolis-Hastings rule:

T @) Ty o)
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Crossover

Va Y2

—————————————————

| New population | \ y= {xl; Y2, X3, }74}

The new population y is accepted with probability min(1,r.) according
to the Metropolis-Hastings rule:

) T(x|y) H(yi) — H(z:)  H(yj) —
exp {— b —

i

T @) Ty x)

H(l‘j)} T(z|y)
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Output Analysis

a) Intercept b) Deterioration Rate

Trace
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Output Analysis

a) Intercept b) Deterioration Rate
Kernel Density i
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Copulas: Definition

e Copulas are functions that combine or link multiple
distribution functions to their univariate marginal distribution

functions.
Marginal Densities

Joint Density

3 Copula

00.20.40,60,8 1

pa(a2) ¢ /
H =

zzzzzzz

e Copulas are multivariate distribution functions with uniform
margins on the unit interval [0,1]
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Copulas

Copulas are suitable for modelling tail dependence and
skewness.

Copulas allow for the separate modelling of marginals and
dependence structure.

Since copulas are invariant under monotone transformations,
concordance measures such as Kendall's Tau and Spearman'’s
Rho are more suitable for evaluating dependence.

Copulas are important because of Sklar's Theorem.
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Copulas: Derailment Data®

e 161 observations were used for the copula analysis.
e Explanatory variables (Speed, Residual Length, Track Quality)

¢ Response variable (Number of Derailed Cars)

®Emmanuel Martey, University of Delaware
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Exploratory Data Analysis

Derailed Cars against Speed
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Derailed Cars
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Exploratory Data Analysis

Derailed Cars vs Res. Length
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Some Bivariate Copula Families

Copula

Properties

Normal/Gaussian (N)
Student t-copula (t)

Clayton (C)
Gumbel (G)
Joe (J)

Frank (F)

Clayton-Gumbel
(BB1)

Joe- Clayton (BB7)

Rotations of
Archimedean copulas

Tail symmetric, no tail dependence

Tail-symmetric, tail dependence

Tail-asymmetric, Suitable for modelling lower tail de-
pendence

Tail-asymmetric, Suitable for modelling upper tail
dependence

Tail-asymmetric, Suitable for modelling lower tail de-
pendence

Tail-symmetric, no tail dependence, Tends to work
well when tail dependence is very weak.
Tail-asymmetric, Suitable for different non-zero up-
per and lower tail dependence

Tail-asymmetric, Suitable for different non-zero up-
per and lower tail dependence

Suitable for modelling various forms of negative de-
pendence
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Topological Data Analysis



Topological Data Analysis

Data-Driven Approach.

Studying complex high dimensional data without any
assumptions or feature selections.

Shape has meaning; extracting shapes (patterns) of data.

Qualitative and quantitative summaries of the data are
provided.

Especially, TDA using persistent homology provides
threshold-free analysis.
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TDA

e Apply topology to develop tools for studying qualitative
features of data.

e Recover topological and geometric information from sampled
data.

e Topology is the branch of mathematics which concerns itself
with the study of shapes and its properties.
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Algebraic Topology

Properties of geometric objects that are invariant under

“continuous deformations”.
e Bending
e Twisting

Stretching

But not tearing

28



Topological Invariants

e Number of connected components.
e Number of cycles.

e Number of voids.

29



Simplex
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Simplices®

A simplicial complex is built from points, edges, triangular faces,

..\V AY.

0-simplex 1-simplex 2-simplex 3-simplex : exa.lrpple 2
(solid) simplicial complex

Homology counts components, holds, voids, etc.

Homology of a simplicial
complex is computable
void via linear algebra.

(contains faces but
empty interior)

hole

®Wright and Lesnick (2014)

i}



0 — simplex point A°
1 — simplex line segment A'
2 — simplex triangle A?

3 — simplex tetrahedron A3

Simplices
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Simplicial Homology

Simplicial Complex

A simplicial complex is a finite collection of set of simplices.

Simplicial Homology
e Simplex, simplicial complex.
e Chain group, cycle group, boundary group.

e Homology group, homology class, Betti number.

&



Persistence Diagram

Death

Birth
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Example: What is the shape of the data?’

Problem: Discrete points have trivial topology.

"Wright and Lesnick (2014)

35



Idea: Connect nearby points®.

Problem: A graph captures connectivity, but ignores higher-order
features, such as holes.

8Wright and Lesnick (2014)
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Idea: Connect nearby points, build a simplicial complex®.

1. Choose 3. Fill'in
a distance pairs of points complete
d. that are no simplices.

4/Homology detects the hole.

Problem: How do we choose distance d?

®Wright and Lesnick (2014)
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Homology is a mathematical formalism used to define and identify
basic topological features called holes.
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Definition of “Holes”

0-dimensional holes related to the gaps between connected
components.

1-dimensional — can be viewed as tunnels (like a hole in a
donut).

2-dimensional — holes cavities (inside balloon).

Homology class — means individual holes.
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The topological features detected by simplicial homology
correspond to n-dimensional holes. The number of holes is known
as Betti Number.

40



Betti Number

The number of k' order
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Homology

e 0 order holes: clusters.
e 15t order holes: holes.

e 27 order holes: voids.

42



BIG DATA AND
DIFFERENTIAL PRIVACY

s fv Nii Attoh-Okine
= _ = WILEY
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Big Data and Differential Privacy: Analysis Strategies for Railway

Track Engineering, Nii Attoh-Okine — John Wiley & Sons,
Incorporated (2017).

Book Chapters

O ~NO Ol WwWwN

. Introduction

. Data Analysis - Basic Overview

. Machine Learning - Basic Overview

. Basic Foundations of Big Data

. Hilbert-Huang Transform, Profile, Signal, and Image Analysis
. Tensors — Big Data in Multidimensional Settings

. Copula Models

. Topological Data Analysis

9.

Bayesian Analysis

10. Basic Bayesian Nonparametrics
11. Basic Metaheuristics
12. Differential Privacy
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A comprehensive introduction to the theory and practice of
ary data science is for railway track
engineering

Featuring a practical introduction to state-of-the-art data analysis for railway
track engineering, Big Data and Differential Privacy: Analysis Strategies for
Railway Track Engineering addresses common issues with the implementation
of big data applications while exploring the limitations, advantages,
and disadvantages of more conventional methods. In addition,
the book provides a unifying approach to analyzing large volumes of data in
railway track engineering using an array of proven methods and software
technologies.

Dr. Attoh-Okine considers some of today’s most notable applications and
i ions and highli; when a i method or i is
‘most appropriate. Throughout, the book presents numerous real-world
examples to illustrate the latest railway engineering big data applications of
predictive analytics, such as the Union Pacific Railroad’s use of big data to
reduce train derailments, increase the velocity of shipments, and reduce
emissions.

In addition to providing an overview of the latest software tools used to
analyze the large amount of data obtained by railways, Big Data and
Differential Privacy: Analysis Strategies for Railway Track Engineering:
Features a unified framework for handling large volumes
of data in railway track engineering using predictive
analytics, machine learning, and data mining

Explores issues of big data and differential privacy and
discusses the various ad: ges and disad ges of
more conventional data analysis techniques

Implements big data applications while addressing
common issues in railway track maintenance

Explores the advantages and pitfalls of data analysis
software such as R and Spark, as well as the Apache™
Hadoop® data collection database and its popular
implementation MapReduce

Big Data and Differential Privacy is a valuable resource for researchers and
professionals in transportation science, railway track engineering, design
engineering, operations research, and railway planning and management. The
book is also appropriate for graduate courses on data analysis and data
mining, transportation science, operations research, and infrastructure
management.
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Topic Modeling
(Latent Dirichlet Allocation)

Collection of documents — identify underlying “topics” that
organize collection.

What is it for?
Infer the latent structure behind the collection of documents.

Good for:

Document classification and retrieval.
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Key Assumptions behind the LDA Topic Model

Documents exhibit multiple topics (but typically not many)

LDA is a probabilistic model with a corresponding generative
process

e Each document is assumed to be generated by this (simple)
process

A topic is a distribution over a fixed vocabulary

e These topics are assumed to be generated first, before the
documents

Only the number of topics is specified in advance

47



Applications

Images are translated to words (visual words)
¢ Rail images

e Fasteners (worn, missing, polluted, ...)
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Data Storage in DNA

Digital Data: Challenges and Opportunities
a) What is the most efficient way to store rail track information?

b) How secure is the stored data against intervention by
unauthorized agencies and individuals?

c) How stable is the data storage platform?
d) Ease of reproducibility

e) Read and write capabilities

Example
Transportation Technology Center Data
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e Text — Transform into binary (0, 1)

e Nucleotides are represented as

ACGand T

Mapping Function

Mapping Table

Binary - nts.
0000 - AA
0001 - CA
0010 - GA
0011 - TA

Binary - nts.

0100 - AC
0101 - CC
0110 - GC
0111 -TC

Binary - nts.

1000 - AG
1001 - CG
1010 - GG
1011 - TG

1100 - AT
1101 - CT
1110 - GT
1111 -TT

Binary - nts.
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Thank You.





