Rail Service Failure Prediction: An Integrated Approach Using Fatigue Modeling and Data Analytics

Faeze Ghofrani, Seyedsina Yousefianmoghadam, Qing He, Andreas Stavridis

TAIM 2019

State College, PA October 2019

University at Buffalo The State University of New York

CONTENTS

- 1. Introduction
- 2. Research Overview
- 3. Background
- 4. Methodology
- 5. Case Study
- 6. Results
- 7. Conclusions

Research Overview

Research Overview-Continued

Rail Service Failure Prediction: An Integrated Approach Using Fatigue Modeling and Data Analytics

Research Objective

- Develop a data-driven growth prediction model to forecast how an existing defect grows to a complete failure in future?
- Assess the potential (rate) of service failures
- Approach: Fatigue Modeling, combined with Data Analysis

University at Buffalo The State University of New York

Methodology Framework

Carried out mainly by structural engineering group

Methodology: Finite Element Modeling of the Rail

Detail fracture (TDD) is mainly concentrated inside the rail

□ A rail element was created in ABAQUS

UIC60 (60E1) rail profile geometry was used

□ Elastic steel material was used (E=200 Gpa)

Methodology: Finite Element Modeling of the Rail

- Hexahedra structured mesh was used for the rail
- □ A defect was modeled inside the rail head
 - \Box width varied from 15 mm to 55 mm with increments of 10

mm

 \Box depth kept equal to 10 mm

inclined with respect to the longitudinal direction of the rail
 (12.5 degrees) (Zhou et al. 2017)

□ XFEM-crack method was used to overlay defects to the original

mesh

Methodology: Finite Element Modeling the Rail

□ Moment and shear demand profiles were obtained for the considered section:

Methodology: Finite Element Modeling the Track

□ The moment- and shear-demand profiles were introduced, simultaneously, to the rail section modeled in ABAQUS

□ Stress-intensity-factor profiles were obtained for each assumed crack width

□ Maximum range of intensity factors ΔS_{eff} were extracted and used in the Paris law formula to obtain the cycles required for each crack to propagate to a service failure.

$$N = \frac{\left(a_c^{1-m/2} - a_0^{1-m/2}\right)}{C \cdot (1-m/2)} \cdot \left(\Delta S_{eff}\right)^{-m} \qquad \begin{array}{l} C = 2.0 \times 10^{-9} \\ m = 3.33 \end{array}$$

Where a_0 and a_c are the initial and final defect sizes

Methodology: Finite Element Modeling the Track

Number of cycles for crack growth is converted to equivalent accumulated traffic load (MGT), by multiplying it by the load from each wheel (Frýba, 1996)

Intensity factor $(MPa \times m^{0.5})$	Initial crack size (m)	Final size (m)	Ν	MGT
34.5	0.015	0.073	60098	10.22
35.5	0.025	0.073	30465	5.18
43.3	0.035	0.073	9522	1.62
45.2	0.045	0.073	4945	0.84
44.0	0.055	0.073	2936	0.5

University at Buffalo The State University of New York

Methodology: ABC Rejection Algorithm

Bayes' Theorem in General

ABC Rejection algorithm

- \Box Start with a sample of parameter points from prior distribution $p(\theta)$.
- \Box Each sample parameter point θ is simulated using an evolution model and simulated data \check{D} is generated.
- □ If the generated dataset \check{D} varies significantly from the observed dataset D, then the parameter point θ is rejected.

 $p(D,\check{D})\leq\varepsilon$

The outcome of this process is a posterior distribution of parameter points without having to calculate the likelihood

Case Study: Data Description

Data has been provided by CSX for six years 2011-2016

Service failure dispersion over the studied US Class I network

Most frequent defect types that are causing service failures

Defect Type	Percentage of total		
Ordinary Break	28.38		
Transverse Detail Fracture	20.36		
Thermite Weld	14.11		
Bolt Hole Break	4.90		
Crushed Head	4.26		

Number of Service Failures vs Average Temperature

Case Study: Integration of Mechanistic And Statistical Model

Function *FE*- Input: Crack/Defect Size, Output: Required MGT to Complete Breakage (FEM Output)

Function G- Input: Segment Information, Output: Simulated Number of Service Failures

Case Study: Integration of Mechanistic And Statistical Model Generations-Continued

Function Posterior- ABC Rejection Algorithm

Case Study: Integration of Mechanistic And Statistical Model

Main Algorithm

MGT, Weight, Age, Geometry and Rail Defects, Inspection, Grinding, Temperature, Curvature, Grade <

Results and Discussions

Item	Proposed Model	Negative Binomial Model	
Average predicted No. of defects (annual per mile)	0.257	0.267	
Average real No. of defects (annual per mile)	0.269	0.269	
MAE	0.243	0.258	
Number of Segments in test dataset (three fold cross-validation)	21,230		

Variable	Estimate	Z_value	Pr (> z)
(Intercept)	4.14	21.46	0.000
Annual MGT	0.00	15.34	0.000
Weight	-0.03	-9.17	0.000
Count of Geometry Defects	0.02	9.54	0.000
Frequency of Inspection	0.02	5.99	0.000
Presence of Grinding	-0.05	-19.02	0.000
Age*Curve	3.17	12.92	0.000
Average Temperature	-0.09	-28.06	0.000

Contributions of the Study

- □ Designing a comprehensive logical methodology framework for data collection, pre-processing, and modeling based on a collection of datasets from different resources in a Class I railroad
- □ We develop a hybrid physics-informed statistical model for calculating the rate of service failures
- □ The developed method is applied to the prediction of service failure frequency obtained from the inspections in a Class I Railroad.
- □ The results of the proposed method is validated by comparing to the results of other popular count-data models in the literature

Conclusions

Incorporating the physics-based behavior of the railway track on a segment is accompanied with a better estimation of the probable occurrence of service failures.

- Regarding railroad applications, service failure frequency is part of their scoring system to calculate the rail quality and determine the rail renewal for the next year.
- □ It can help on identifying the black spots in the rail track network to prioritize their corrections.
- Therefore, the outcome of this paper can be used to guide how to make decisions of capital planning for railroads.

Acknowledgement

The data was provided by CSX. Authors would like to express their sincere thanks for the support from CSX.

References

- Schafer, D H, & Barkan, C. P. L. (2008). A hybrid logistic regression/neural network model for the prediction of broken rails. In *Proceedings of the 8th World Congress on Railway Research, Seoul, Korea*.
- Schafer, Darwin H., & Barkan, C. P. L. (2008). A Prediction Model for Broken Rails and an Analysis of thier Economic Impact. *Proceedings of the American Railway Engineering and Maintenance-of-Way Association Annual Conference*, 252(847).
- Liu, X., Lovett, A., Dick, T., Rapik Saat, M., Barkan, C. P., 2014. Optimization of ultrasonic rail-defect inspection for improving railway transportation safety and efficiency. *Journal of Transportation Engineering* 140 (10), 04014048.
- Ghofrani, F., He, Q., Mohammadi, R., Pathak, A., & Aref, A. (2019b). Bayesian Survival Approach to Analyzing the Risk of Recurrent Rail Defects. *Transportation Research Record: Journal of the Transportation Research Board*, *2673*(3), 281–293.

Thank you!

faezegho@buffalo.edu

О

```
Function G(p)
# given the data related to segment p, simulate the number of service failures
        define cracks as a list of size T
        define n serv as a list of size T initialized with 0
        For t in 1 to T do
              if t>1
                     for crack in cracks[t-1] do
                             if t^*MGT_p > FE(crack)
                                   n \ serv[t] = n \ serv[t] + 1
                                   remove crack from cracks[t-1]
                              end
                       end
              end
              n_{cracks} \sim \text{Poisson}(\lambda_{p})
              For i in 1 to n cracks do
                     cracks[t][i] \sim \text{DiscreteUniform}(15, 75)
                     if MGT_p > FE(cracks[t][i]) or cracks[t][i] \ge 55
                              n \ serv[t] = n \ serv + 1
                       end
               end
        end
end
```



```
function POSTERIOR (n\_serv, MGT)

\lambda = []

distances = []

for m in 1 to M do

\lambda_{m} \sim uniform[0, 10]

\lambda = \lambda + \lambda_{m}

n\_defect = G(\lambda_{m}, MGT)

distance = DITANCE (n\_serv, n\_serv)

distances = distances + distance
```

end

use ABC framework to reject distances higher than a threshold and find $\lambda posterior$

Return $\lambda posterior$

end

University at Buffalo The State University of New York

For *fold*=1 to K do train data, test data = PARTITION(data, fold, K) $\lambda = []$ MGT = []W = []S = []For p in train data do $\lambda_p = POSTERIOR(n_serv_p, MGT_p)$ $\lambda = \lambda + \lambda_n$ $MGT = MGT + MGT_{p}$ $Weight = Weight + Weight_n$ $Speed_p = Speed + Speed_p$ Geo $Def_n = Geo Def + Geo Def_n$ $Inspection_{n} = Inspection + Inspection_{n}$ Grinding $_{p}$ = Grinding + Grinding $_{p}$ Temperature $_{p}$ = Temperature + Temperature $_{p}$ end # fit log-linear regression on train data $log(\lambda) = \beta + \alpha_1 * MGT + \alpha_2 * Speed + \alpha_3 * Weight + \alpha_4 * Geo_Def + \alpha_5 * Inspection + \alpha_6 * Grinding + \alpha_7 * Temperature$

```
# use the regression coefficients to predict \lambda for test data
```

 $m_{defects} = []$ $m_{defects} = []$

For *p* in *test_data* do

 $lambda_p = exp(\beta + \alpha_1 * MGT + \alpha_2 * Speed + \alpha_3 * Weight + \alpha_4 * Geo_Def + \alpha_5 * Inspection + \alpha_6 * Grinding + \alpha_7 * Control of the second second$

Temperature)

 $n_serv(hat)_p = G(\lambda_p, MGT_p)$ $n_serv = n_serv + n_serv_p$ $n_serv(hat) = n_serv(hat) + n_serv(hat)_p$ print(metric(n_serv, n_{serv} (hat)))

end End