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Introduction: BDA in RTS

The application of big data analytics in railway transportation systems
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Rail Service Failure Prediction: An 
Integrated Approach Using Fatigue 
Modeling and Data Analytics
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• Develop a data-driven  growth prediction model to forecast how 
an existing defect grows to a complete failure in future?

• Assess the potential (rate) of service failures
• Approach: Fatigue Modeling, combined with Data Analysis

Research Objective

Ongoing in this study
Ghofrani et al. (2019)



‘-

8

Data-driven 
Model

Mechanics Model

Service Failures in 
Literature

Ensemble 
Model

Machine 
Learning 
Models

Empirical 
Equations 
Developed Using 
Experimental Data 



‘-

9

Methodology Framework

Determining the MGT 
thresholds required for a 
crack of specific size to 

propagate to a service failure

Assuming prior 
distributions for size 

and frequency of cracks

Simulation based on 
Approximate Bayesian 
Computation (ABC) 

framework

Calculating the posterior 
distribution for size and 

frequency of cracks 

Predicting frequency of 
service failures 

Mechanics 
Modeling 
with FEM

Data Analytics 
with ABC

Carried out mainly by structural engineering group

Carried out mainly by transportation 
engineering group at UB
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Methodology: Finite Element Modeling of the Rail

 Detail fracture (TDD) is mainly concentrated inside the rail

 A rail element was created in ABAQUS

 UIC60 (60E1) rail profile geometry was used

 Elastic steel material was used (E=200 Gpa)
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Methodology: Finite Element Modeling of the Rail
 Hexahedra structured mesh was used for the rail

 A defect was modeled inside the rail head

 width varied from 15 mm to 55 mm with increments of 10

mm

 depth kept equal to 10 mm

 inclined with respect to the longitudinal direction of the rail

(12.5 degrees) (Zhou et al. 2017)

 XFEM-crack method was used to overlay defects to the original

mesh
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Methodology: Finite Element Modeling the Rail
 Stress induced to the section containing the defect is affected by the location of

the wheel

 Moment and shear demand profiles were obtained for the considered section:

Defected section
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Methodology: Finite Element Modeling the Track

 The moment- and shear-demand profiles were introduced, simultaneously, to
the rail section modeled in ABAQUS

 Stress-intensity-factor profiles were obtained for each assumed crack width

 Maximum range of intensity factors ∆𝑆were extracted and used in the
Paris law formula to obtain the cycles required for each crack to propagate to
a service failure.

C ൌ 2.0 ൈ 10ିଽ

m ൌ 3.33

are the initial and final defect sizescand a0Where a
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Methodology: Finite Element Modeling the Track

 Number of cycles for crack growth is converted to equivalent accumulated
traffic load (MGT), by multiplying it by the load from each wheel (Frýba,
1996)

Intensity factor 
(M𝑃𝑎 ൈ 𝑚.ହ)

Initial crack 
size (m)

Final size 
(m) N MGT

34.5 0.015 0.073 60098 10.22
35.5 0.025 0.073 30465 5.18
43.3 0.035 0.073 9522 1.62
45.2 0.045 0.073 4945 0.84
44.0 0.055 0.073 2936 0.5

0.073
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Methodology: ABC Rejection Algorithm

Bayes’ Theorem in General

ABC Rejection algorithm

 Start with a sample of parameter points from prior distribution 𝑝 𝜃 .
 Each sample parameter point θ is simulated using an evolution model and

simulated data Ď is generated.
 If the generated dataset Ď varies significantly from the observed dataset D, then

the parameter point θ is rejected.
p(D, Ď)  ε

 The outcome of this process is a posterior distribution of parameter points without
having to calculate the likelihood

𝑝 𝜃|𝐷 ൌ
𝑝 𝐷|𝜃 𝑝 𝜃

𝑝 𝐷

Posterior Evidence

PriorLikelihood
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Case Study: Data Preparation

Track Tonnage Defects and 
Service Failures

Inspections 
and Grinding

Selecting 
Segments

Removing 
Segments 
Overlaps

Dividing 
Segments

Assigning a 
Unique ID for 
each Segment

Assigning Defects 
and service 

failures to Track 
Segments

Allocating 
attributes of 

segments using 
ID

Input Dataset

Processing

Output Dataset An integrated Dataset with Required Variables 
for Modeling Purpose

Temperature

Data provided by FRA from a Class I US Railroad from 2011 to 2016

National Oceanic and 
Atmospheric 
Administration (NOAA)
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Case Study: Data Description

Defect Type Percentage of total

Ordinary Break 28.38

Transverse Detail Fracture 20.36

Thermite Weld 14.11

Bolt Hole Break 4.90

Crushed Head 4.26

Most frequent defect types that 
are causing service failures

Service failure dispersion over the 
studied US Class I network

Number of Service Failures vs Average Temperature 

Data has been provided by CSX for six 
years 2011-2016
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Case Study: Integration of Mechanistic And Statistical Model

The function gets segment 
information as input

It draws number of cracks for 
each segment (λp) from a 

Poisson distribution

It draws size of each crack 
from a discrete uniform 

distribution

It checks if the drawn cracks 
would turn into a service failure 

(using segment MGT and FE
function)

It calculates number of defects 
that turn into service failures

The function returns 
simulated number of service 

failures for each segment 

 Functions

Function FE- Input: Crack/Defect Size, Output: Required MGT to Complete 
Breakage (FEM Output)

Function G- Input: Segment Information, Output: Simulated Number of Service Failures
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λ1 λ2 λ3

n_serv 1

Prior distribution of the model parameter, number of crack (λ): 
assumed as discrete uniform distribution

n_defects

Observational data

1. Summary statistic (n_serv) from 
observational data computed

2. n simulations are performed by drawing 
parameter values from the prior distribution 
for each segment

3. The summary statistic (𝑛ො_𝑆𝑒𝑟𝑣) is 
computed for each simulation using 
Function G

4. Based on the distance and a tolerance, 
we decide for a simulation whether its summary statistics to 
be kept or to be rejected 
(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑛_𝑠𝑒𝑟𝑣, 𝑛ො_𝑆𝑒𝑟𝑣  𝜀))

5. The posterior distribution of λ is approximated using the
distribution of parameter values λi of accepted simulations

Posterior distribution 
of model parameter λ

Simulation 1 Simulation 2 Simulation 3 Simulation n

n_serv 2 n_serv 3
n_serv n

Case Study: Integration of Mechanistic And Statistical Model
 Functions- Continued
Function Posterior- ABC Rejection Algorithm
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Partition the dataset into 
train and test sets

For the segments in train 
set, the posterior 

distribution of λ is 
calculated (using 

POSTERIOR Function)

Fitting a log-linear 
regression model on train

data segments, the 
coefficients of each 

variable is determined

The computed variable 
coefficients are used to 
predict λ for test dataset 

Simulated number of 
failures are computed 

using Function G

The average difference 
between simulated 
service failures and 

observed failures of all 
segments  are calculated 

as the error metric

Case Study: Integration of Mechanistic And Statistical Model
 Main Algorithm

MGT, Weight, Age, Geometry and Rail Defects, 
Inspection, Grinding, Temperature, Curvature, Grade
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Results and Discussions

Item Proposed Model Negative Binomial 
Model

Average predicted 
No. of defects 
(annual per mile)

0.257 0.267

Average real No. of 
defects (annual per 
mile)

0.269 0.269

MAE 0.243 0.258
Number of Segments 
in test dataset (three 
fold cross-validation)

21,230

Variable Estimate Z_value Pr (>|z|)

(Intercept) 4.14 21.46 0.000
Annual MGT 0.00 15.34 0.000
Weight -0.03 -9.17 0.000

Count of Geometry Defects 0.02 9.54 0.000

Frequency of Inspection 0.02 5.99 0.000
Presence of Grinding -0.05 -19.02 0.000
Age*Curve 3.17 12.92 0.000
Average Temperature -0.09 -28.06 0.000
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Contributions of the Study

 Designing a comprehensive logical methodology framework for data
collection, pre-processing, and modeling based on a collection of datasets
from different resources in a Class I railroad

We develop a hybrid physics-informed statistical model for calculating the
rate of service failures

 The developed method is applied to the prediction of service failure
frequency obtained from the inspections in a Class I Railroad.

 The results of the proposed method is validated by comparing to the results
of other popular count-data models in the literature
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Conclusions

 Incorporating the physics-based behavior of the railway track on a 

segment is accompanied with a better estimation of the probable 

occurrence of service failures.

 Regarding railroad applications, service failure frequency is part of their 

scoring system to calculate the rail quality and determine the rail renewal 

for the next year.

 It can help on identifying the black spots in the rail track network to 

prioritize their corrections.

 Therefore, the outcome of this paper can be used to guide how to make 

decisions of capital planning for railroads.
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Function G (p) 
# given the data related to segment p, simulate the number of service failures 

define cracks as a list of size T
define n_serv as a list of size T initialized with 0 
For t in 1 to T do 

if t>1 
for crack in cracks[t-1] do 

if t*MGTp > FE(crack) 
n_serv[t] = n_serv[t] + 1 
remove crack from cracks[t-1] 

end
end

end
n_cracks ~ Poisson (𝜆p) 
For i in 1 to n_cracks do 

cracks[t][i] ~ DiscreteUniform(15, 75) 
if MGTp > FE(cracks[t][i]) or cracks[t][i] >= 55

n_serv[t] = n_serv + 1 
end

end
end

end
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function POSTERIOR (n_serv, MGT)
λ = [] 
distances = [] 
for m in 1 to M do 

λm~ uniform[0, 10]
λ = λ + λm
n_defect = G(λm, MGT) 
distance = DITANCE (n_serv, n_serv) 
distances = distances + distance

end
use ABC framework to reject distances higher than a threshold 

and find λposterior
Return λposterior

end
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For fold=1 to K do
train_data, test_data = PARTITION(data, fold, K) 
𝜆 = [] 
MGT = [] 
W = []
S = [] 
For p in train_data do

𝜆= POSTERIOR(n_servp, MGTp)
𝜆 ൌ  𝜆  𝜆

MGT = MGT + MGTp
Weight = Weight + Weightp
Speedp = Speed + Speedp
Geo_Def p = Geo_Def + Geo_Def p
Inspection p = Inspection + Inspection p

Grinding p = Grinding + Grinding p
Temperature p = Temperature + Temperature p

end
# fit log-linear regression on train data 
log(𝜆 ) = β+ α1*MGT + α2*Speed +α3*Weight+ α4* Geo_Def + α5* Inspection + α6* Grinding + α7* Temperature

# use the regression coefficients to predict 𝜆 for test data
n_defects = []

             𝑛_𝑑𝑒𝑓መ𝑒𝑐𝑡𝑠 = []
For p in test_data do

lambda_p = exp(β+ α1*MGT + α2*Speed + α3*Weight+ α4* Geo_Def + α5* Inspection + α6* Grinding+α7*
Temperature) 

𝑛_𝑠𝑒𝑟𝑣ሺℎ𝑎𝑡ሻ = G(𝜆, MGTp)
n_serv = n_serv + n_servp

𝑛_𝑠𝑒𝑟𝑣ሺℎ𝑎𝑡ሻ = 𝑛_𝑠𝑒𝑟𝑣ሺℎ𝑎𝑡ሻ + 𝑛_𝑠𝑒𝑟𝑣ሺℎ𝑎𝑡ሻ
print(metric(n_serv, 𝑛௦௩ ሺℎ𝑎𝑡ሻ))

end
End


