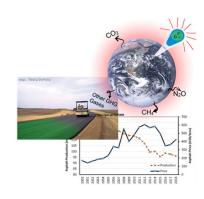


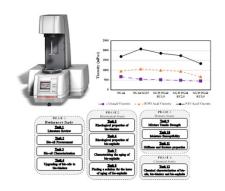
Application of Bio-binders as Sustainable Alternative to Conventional Asphalt Binders

Mansour Solaimanian

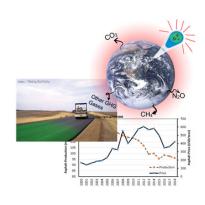
The Pennsylvania State University October 28, 2019


The Researcher

PhD Candidate, Saman Barzegari

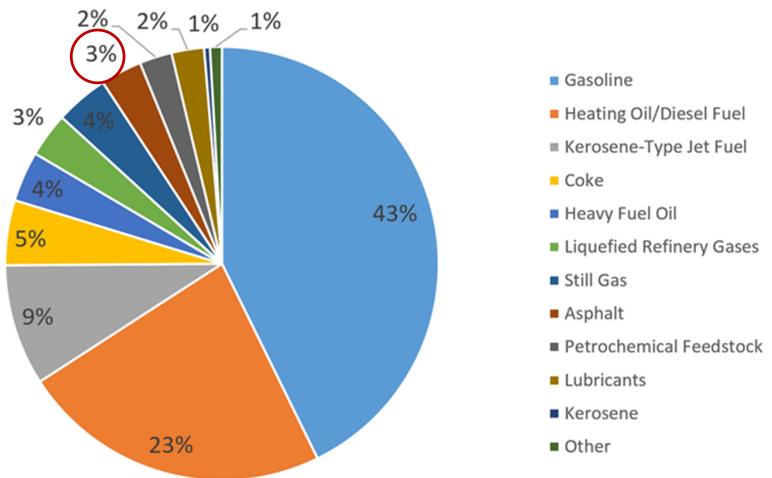


Application of bio-binders in asphalt pavements.


Introduction, background, and problem statement

Discussion of E\experiment and results

SUMMARY CONCLUSIONS FUTURE WORK


Summary, conclusions, and recommendations

Introduction, background, and problem statement

- Why consider alternatives to asphalt binders?
- What are bio-binders?
- What materials can be used?

https://www.quora.com/How-many-gallons-of-gas-can-you-get-to-a-barrel-of-oil

Why need alternatives to asphalt binders?

1) Environment

Production of asphalt binders is energy-intensive Large Carbon Footprint

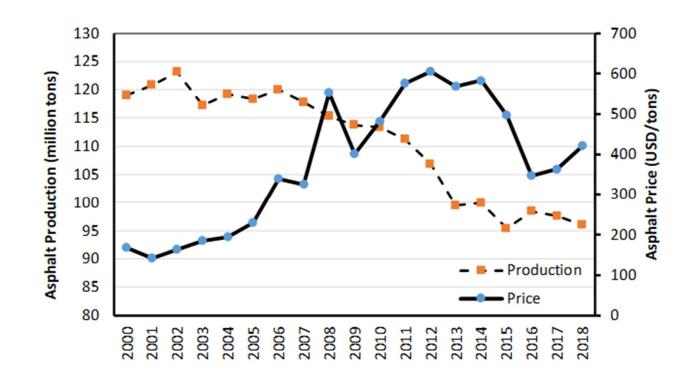
Extraction and transport of each ton of crude oil:

130 kg Eq. CO₂ emissions

Production of each ton of asphalt binder from crude oil:

126 kg Eq. CO₂ emissions

Production of bio-oils: no carbon footprint!


Through use of renewable fuels created during the process

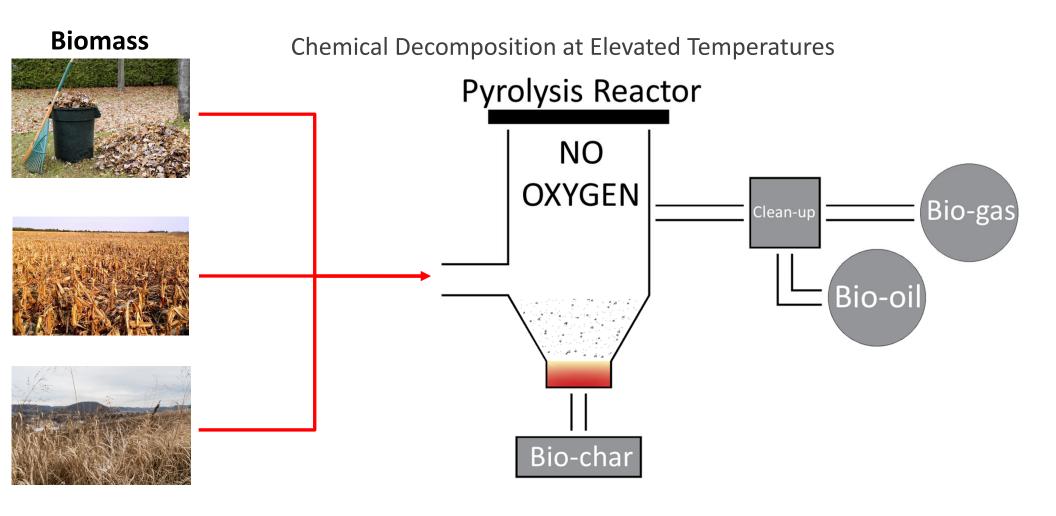
Why need alternatives to asphalt binders?

2) Economy

- 36% drop in production over 12 years!
- Demand increases by average rate of 3.3%
- Global price of asphalt binder is on an increasing trend

How are the bio-binders produced?

Bio-binders are made through processing of bio-oils!


Bio-oils are biomass liquefied through different thermochemical processes:

- Steam gasification
- Pyrolysis
- Solar gasification
- Supercritical fluid extraction
- Microbial fermentation

Biomass is any organic material (plant or animal based) used for energy production

Production of bio-oil

Production of Bio-Oil

Bio-oil is a thick black-brown substance which smells heavily like burnt wood!

Bio-oils are treated inside a shear blender at high temperatures to:

- Remove water and volatiles
- Increase viscosity
- Improve stability

The end product is called bio-binder

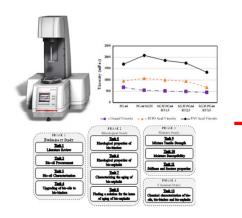
Blending bio-binder into conventional asphalt produces bio-asphalt

Past studies on bio-binders.

Majority of studies concluded that bio-binders

- 1) soften asphalt
- 2) age drastically.
- 3) manifest brittle behavior at low-temperature

Recommendation to address this issue:


Minimize the bio-binder content in bio-asphalts!

Question:

- Is it possible to replace substantial quantities of petroleum-based asphalt binders with sustainable bio-binders?
- Is there a way to address the severe aging of bioasphalts to improve low-temperature properties?
- How do mixtures made with bio-asphalts perform?

Discussion of experiments and results

- Bio-binders used in this study
- Properties of bio-oils and bio-binders
- Properties of bio-asphalts and effect of aging
- Improving the aged bio-asphalt properties
- Performance of mixtures with bio-asphalts
- Chemical characterization of bio-oils, bio-binders and bio-asphalts

Four different plant-based bio-binders were used in this study.

Switchgrass
A non-woody plant

White Pine
A softwood tree

White Oak
A hardwood tree

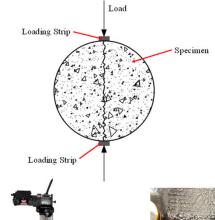
Four different plant-based bio-binders was used in this study.

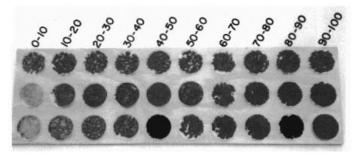
Material	Cellulose (%)	Hemicellulose (%)	Lignin (%)
Switchgrass (Sun and Cheng 2002)	33-37	24-40	12-17
Pine wood (Räisänen and Athanassiadis 2013)	35-40	27-32	20-27
Oak wood (Le Floch et al. 2015)	38-42	22-30	25-30

Investigate physical properties of bio-oils, bio-binders and bio-asphalts

Rheological Properties

- Bio-oils
 - Viscosity
- Bio-binders, asphalt binders and bio-asphalts
 - > Viscosity
 - > Temperature Sensitivity
 - Rutting Potential
 - Cracking Potential
 - Multiple Stress Creep Recovery
 - Linear Amplitude Sweep




Evaluate properties of bio-oils, bio-binders and bio-asphalts in asphalt concrete

Mixture Properties

- Strength of Mixtures
- Moisture Damage Resistance
- Rutting Resistance
- Fracture Properties

Chemical Composition

- Comparing different bio-oils and biobinders
- Effect of upgrading
- Effect of aging

Fourier Transform Infrared Spectroscopy (FT-IR)

Gas Chromatography-Mass Spectrometry (GC-MS)

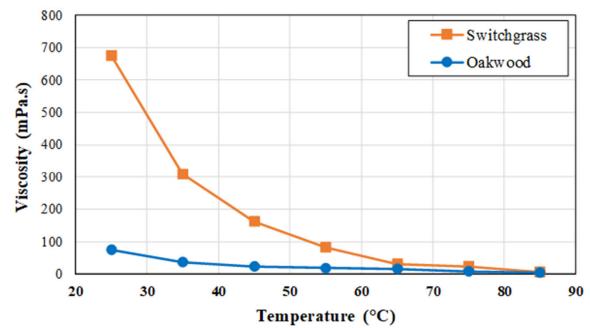
Nuclear Magnetic Resonance (NMR)

Basic Properties of bio-oils

Flash point

95-100°C for all bio-oils

→ Way below asphalt binders with flash point of above 230 °C

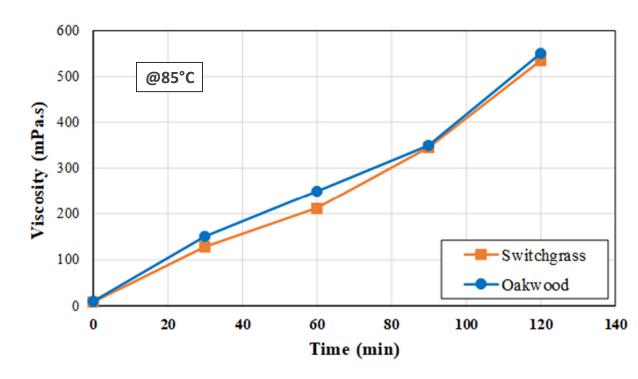

Boiling point

105-110°C for all bio-oils

→ Way below asphalt binders with boiling point of above 350 °C

Effect of temperature

Viscosity decreases with temperature



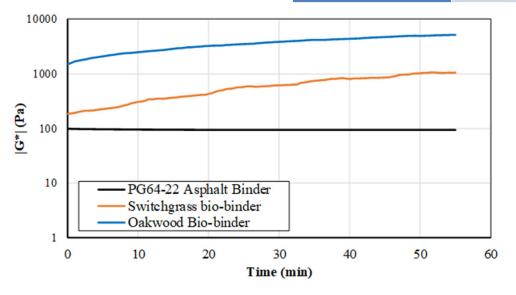
Basic Properties of bio-oils

Effect of upgrading

Viscosity increases during upgrading

Bio-binders are still softer than asphalt binders (below 3 Pa.s at 135 °C)

Bio-binders behave differently from asphalt

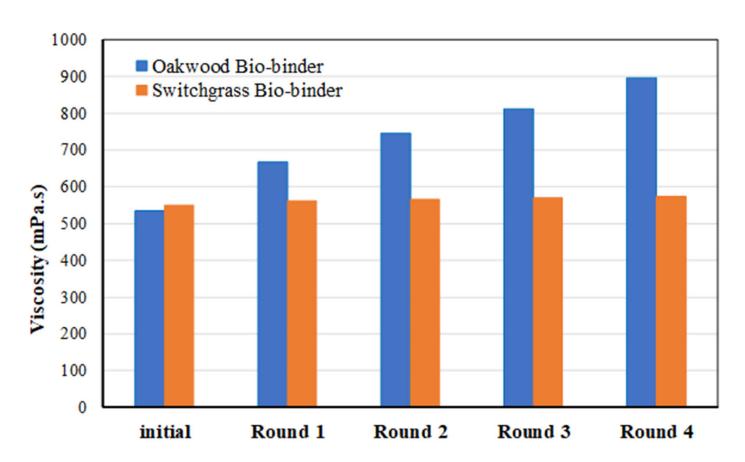

PennState
16

binders.

High-temperature properties

- Unaged: Comparable with asphalt binders
- Aged: Properties changed significantly

Material	Unaged true grade (°C)	RTFO true grade (°C)
Switchgrass	54.7	82.4
Oakwood	77.2	N/A
B1 Pine	55.2	83.1
B2 Pine	56.7	84.7
PG64-22 binder	68.6	68.1



Sensitive to reheating

Adding bio-binders to asphalt binders

First step: determining the blending ratio

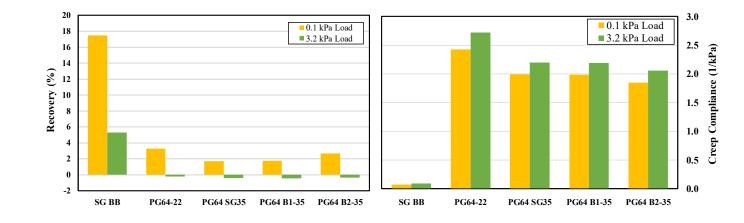
✓ Bio-binder content was limited to 35%

Asphalt Binder Pure Bio-binder 20% BB 35% BB 50% BB 50% BB 50% BB FOO-22 PG 64-22

Softening effect on the <u>unaged</u> bioasphalts at 35% replacement

	Bio-binder	Base binder	Continuous grade (°C)
PG64 SG0	N/A	PG 64-22	68.6
PG64 SG35	Switchgrass	PG 64-22	63.9
PG64 B1-35	Blend 1 Pine	PG 64-22	68.2
PG64 B2-35	Blend 2 Pine	PG 64-22	67.3

2500


Short-term aged bio-asphalts:

High-temperature grade:

Sample ID	Bio-binder	Unaged Grade Temperature (°C)	Grade Temperature (°C)
PG64 SG0	N/A	68.6 ——	→ 68.1
PG64 SG35	Switchgrass	63.9	68.2
PG64 B1-35	B1 Pine	68.2 ——	→ 69.5
PG64 B2-35	B2 Pine	67.3 ——	→ 69.5

MSCR results:

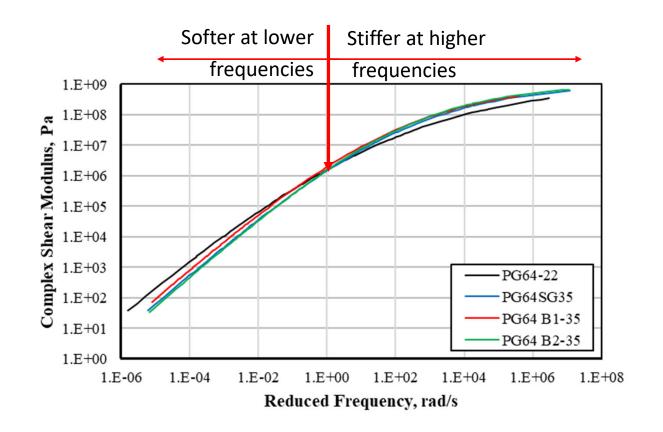
- 1) Lower recovery
- 2) Lower creep compliance

PennState 21

How does aging impact bio-asphalts?

And Long-term aged bio-asphalts:

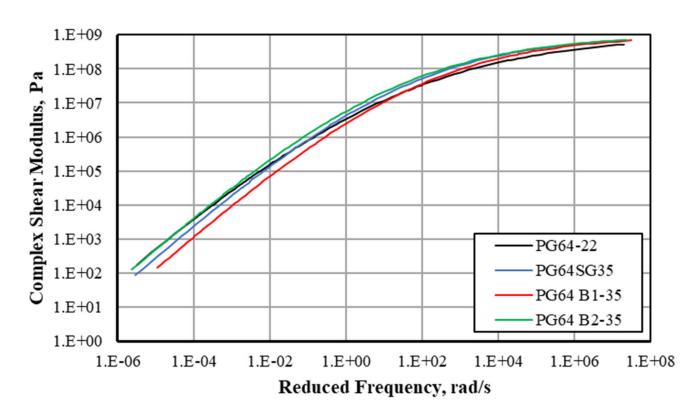
		Bending B	eam Rhed (BBR)	Linear Amplitude Sweep (LAS)		
Binder Type	Intermediate Temperature (°C)		Stiffness (kPa)	m-value	N _f at 2.5% binder Strain	N _f at 5.0% binder Strain
SG BB	N/A	N/A	N/A	N/A	N/A	N/A
PG 64 SG0	23.5	-12	207	0.315	9231	152
PG64 SG35	28.3	-12	349	0.287	554	14
PG64 B1-35	28.4	-12	364	0.282	726	15
PG64 B2-35	29.2	-12	399	0.268	533	11


Long-term aging severely affects the properties of bio-asphalts with high bio-binder content

Effect of aging on thermorheological properties of bio-asphalts

Unaged bio-asphalts

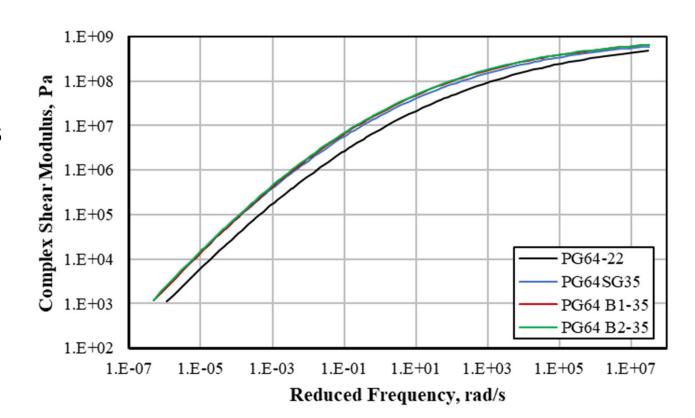
Unaged bio-asphalts have higher temperature susceptibility than the base binder



Effect of aging on thermorheological properties of bio-asphalts

Short TermRTFO-aged bio-asphalts

RTFO-aging does not affect the behavior of bio-asphalts significantly



Effect of aging on thermorheological properties of bio-asphalts

Long-Term PAV-aged bio-asphalts

PAV-aging does not affect the behavior of bioasphalts significantly

Is there a <u>Practical</u> way to address the aging of bio-asphalts?

Investigate effect of rejuvenators to reduce aging effect

✓ If effective, it can be an inexpensive method to mitigate the effect of aging of bio-binders

Adding Rejuvenator to Encounter Aging Effect

Effect on Viscosity at high and intermediate temperatures:

	Unaged		Short Te	erm Aged	Long Term Aged		
Binder Type	Grade Temperature (°C)	Viscosity at 135°C (mPa.s)	Grade Temperature (°C)	Viscosity at 135°C (mPa.s)	Intermediate Grade Temperature (°C)	Viscosity at 135°C (mPa.s)	
PG 64 SG0	68.6	670	68.1	905	22.1	1695	
PG64 SG35	63.9	498	68.2	1065	28.3	N/A	
PG64 SG35 RT5%	6 57.6	335	59.8	550	19.9	1213	

Reduces viscosity and stiffness

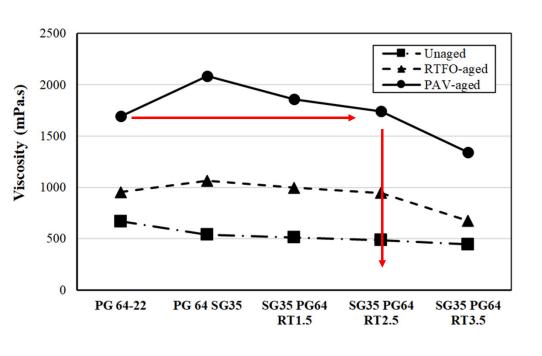
Adding Rejuvenator to Encounter Aging Effect

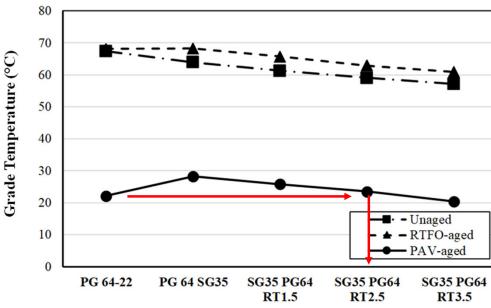
Effect on stiffness and relaxation at low-temperature

	-18 °C		-12 °C		-6 °C	
Binder Type	Stiffness (kPa)	m-value	Stiffness (kPa)	m-value	Stiffness (kPa)	m-value
PG 64 SG0	377	0.28	207	0.32	N/A	
PG64 SG35	N/A		349	0.29	158	0.339
PG64 SG35 RT5%	248	0.30	119	0.36	N/A	

Helps with the low-temperature properties as well!

But how much rejuvenator should be used?

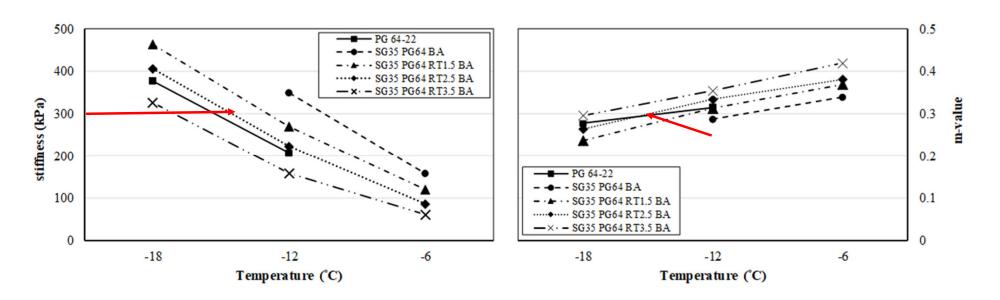

Optimizing the rejuvenator content



Goal: Restore the aged bio-asphalt properties to those of the base asphalt binder

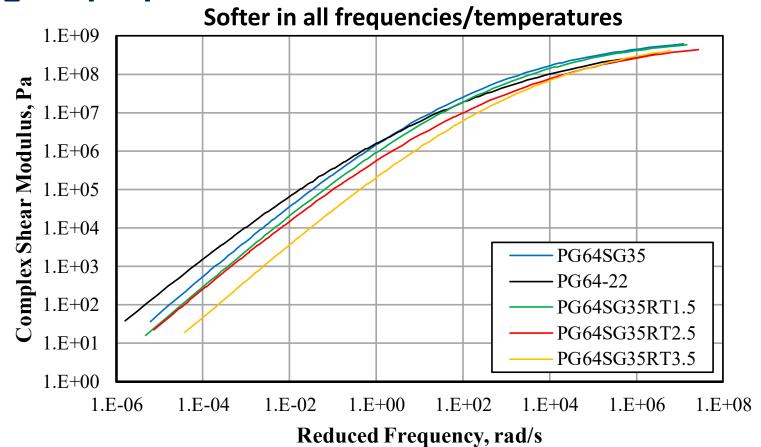
Approach: Prepare bio-asphalts with different rejuvenator contents and look at:

1) Viscosity and intermediate grade temperature of long term-aged binders

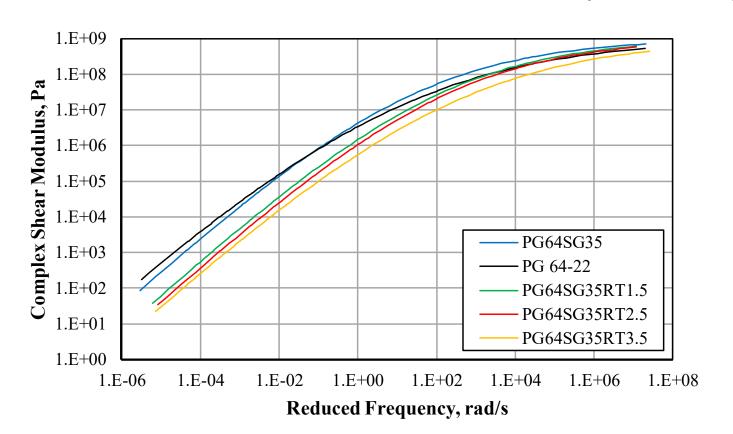


Optimizing rejuvenator content

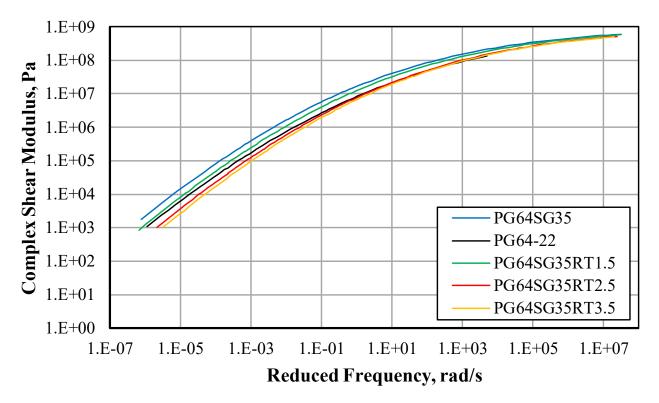
3) Cold temperature properties of PAV-aged binders



2.5% rejuvenator was considered as optimum for the bio-asphalts in our study.


Effect of rejuvenator content on thermorheological properties

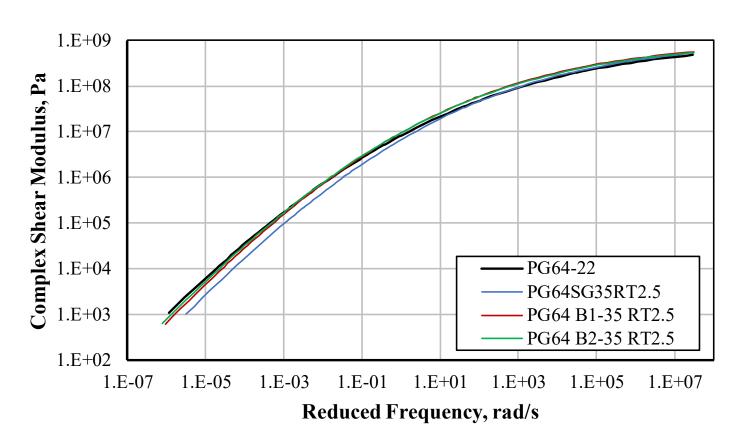
1) Unaged bio-asphalts:


Effect of rejuvenator content on thermorheological properties 2) RTFO-aged bio-asphalts: Softer in all frequencies/temperatures

PennState 30

Effect of rejuvenator content on thermorheological properties

3) PAV-aged bio-asphalts:


Bio-asphalt with 1.5% to 2.5% rejuvenator has a mastercurve most similarly matching the base asphalt binder.

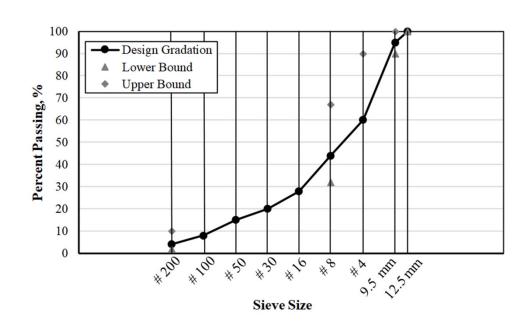
PennState 32

PAV-aged bio-asphalts

Behaving very similar to the base binder

Mixtures performance

A standard 9.5 mm Superpave mix design


Locally sourced dolomite and limestone aggregates was used

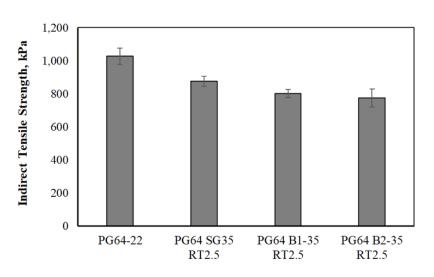
Blend of Fine (B3) and Coarse (A8) aggregates

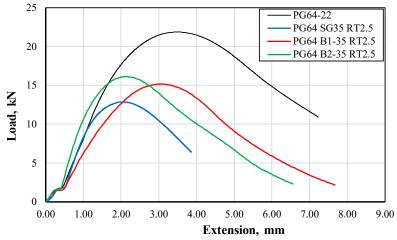
Binder content: 5.4%

Properties investigated:

- Tensile strength
- Resistance to moisture damage

- Rutting resistance
- Fracture properties

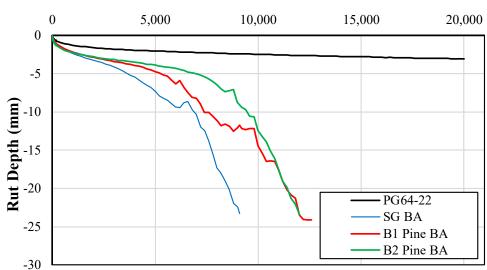



1) Indirect Tensile Strength (IDT)

Material	G* @ 25C	δ @ 25°C
PG 64-22	1.91E+06	54.76
PG64 SG35 RT2.5	1.01E+06	66.77
PG64 B1-35 RT2.5	1.47E+06	63.04
PG64 B2-35 RT2.5	1.20E+06	64.51

However!

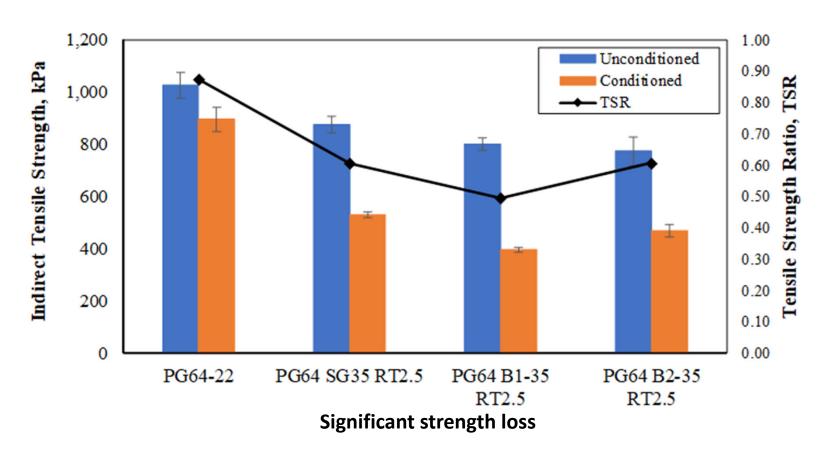
Loss of Flexibility with Bio-asphalt


Mixture performance

3) Resistance to rutting and stripping Hamburg Wheel-Track Testing (HWTT)

Material	PG64-22	Switchgrass BA	B1 Pine BA	B2 Pine BA
Stripping Inflection Point (SIP)	N/A	6616	6534	8375

Number of Passes

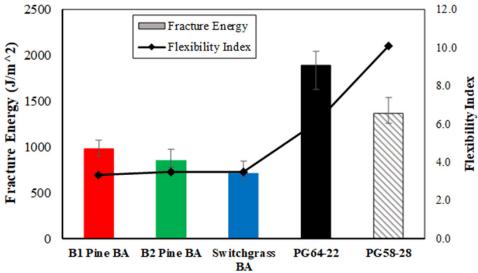

Material	G* @ 50C	δ @ 50°C	Rutting Parameter
PG 64-22	36,598	70.5	38,822
Switchgrass BA	12,218	79.7	12,416
B1 Pine BA	17,673	78.1	18,062
B2 Pine BA	14,803	78.8	15,089

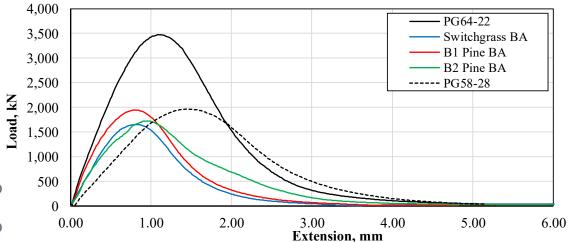
Bio-asphalts at 50°C are considerably softer than the base asphalt binder

Mixture performance

4) Resistance of mixtures to moisture damage through Tensile Strength Ratio (TSR)

Mixture performance




6) Fracture properties of samples through Semi-Circular Bend

(SCB) test

All bio-asphalt samples have:

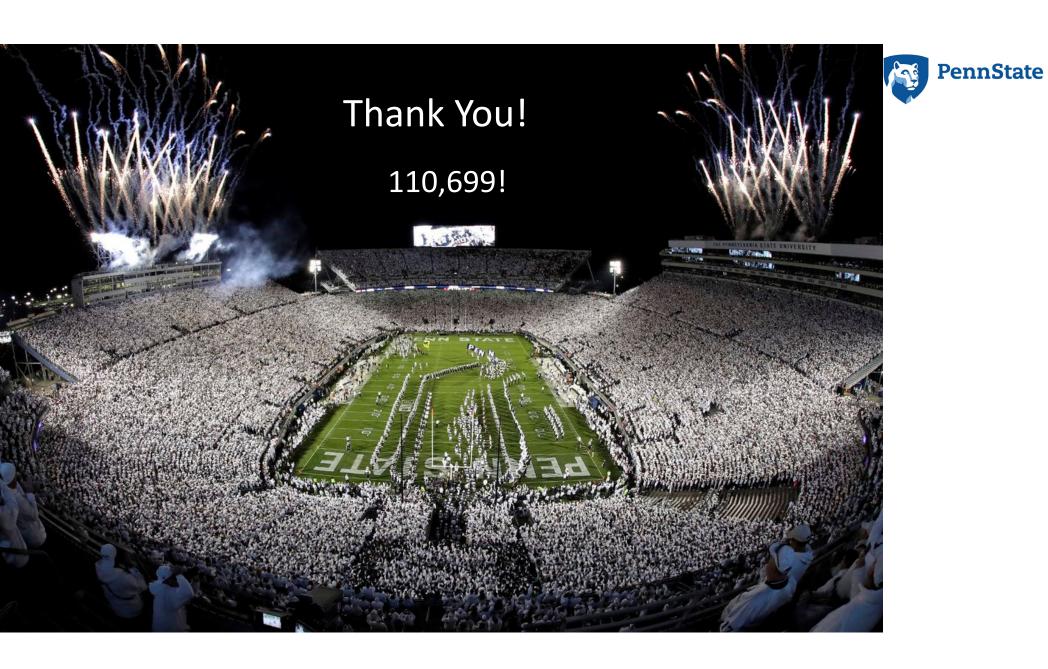
- lower peak load
- Lower fracture energy
- lower Flexibility

SUMMARY CONCLUSIONS FUTURE WORK

Summary, conclusions, and recommendations for future work

Summary and Conclusions:

- 1) Four different plant-based bio-binders were investigated.
- 2) Bio-oils require upgrading to remove water and volatiles.
- 3) Unaged and short-term aged bio-asphalts have comparable properties with conventional asphalt binders
- 4) Properties of pure bio-binders are significantly affected with long-term aging.
- 5) Incorporation of small quantities of rejuvenator offsets the effect of severe aging.



Summary and Conclusions:

- 6) Flexibility of mixtures with bio-asphalt is lower than control mixtures
- 7) Mixtures with bio-asphalts have lower tensile strength, rutting resistance and fracture energy due to the softer nature of binder
- 8) Moisture resistance of bio-asphalt mixtures was found to be lower than the control mixture

Recommendations:

- 1) Need methods/additives to facilitate chemical interaction between bio-binders and the base asphalt binder.
- 2) Need methods/additives to stabilize the bio-oils/bio-binders prior to blending with asphalt binders.
- 3) Effect of using additives such as cross-linkers such as sulfur, polymers, antistripping agents should be studied.
- 4) Study should be expanded to include other aggregate types.

