Track Performance and Degradation Monitoring Technologies

Ted Sussmann, Ph.D. Volpe Center and University of Hartford

UNIVERSITY OF HARTFORD

Inspection

- Visual
- Geometry
- Gage Restraint Measurement
- Ground Penetrating Radar
- Track Deflection

Visual Inspection

- Hy-rail / Walk
- Observe:
 - ROW
 - fences, drainage...
 - track structure condition
 - rails, ties, fasteners, joints
 - geometry

Track Geometry Measurement

- Rail Position
 - Profile, Alignment
 - Gage, Crosslevel
- Autonomous

Gage Restraint Measurement System (GRMS)

- Split axle nominally applies:
- Lateral Force 14kips
- Vertical Force 21kips
- L/V = $^{\circ}$ 0.7
- Actual ForcesMeasured
- Produces:
 - Gage Widening Projection (GWP)
 - Projected Loaded Gage (PLG24)

Ground Penetrating Radar (GPR)

- **GPR Parameters**
 - Ballast Fouling Index (BFI)
 - 2 GHz Antenna
 - Ballast Thickness Index (BTI)
 - 400 MHz and 2 GHz
 - Layer Roughness Index (LRI)
 - Free Draining Layer (FDL) Depth Index
- **Moisture Detection**
 - (400 MHz and 2 GHz)
- Free Draining Layer Depth (FDL)
 - Thickness of clean ballast to assess:
 - Drainage
 - Moisture damage to wood ties
 - Subgrade deformation potential
 - Based on BFI using threshold of 20
- Supplied by Balfour Beatty Rail / Zetica produces several metrics that characterize track
- Upcoming: Real-time FDL

Vertical Track Deflection Measurement System (VTDMS)

- Developed by the University of Nebraska-Lincoln under grant from FRA;
 commercialized by MRail and available through Harsco Rail.
- System measures a component of the total vertical deflection of a rail.

LIDAR

Comprehensive Inspection

- Goal: quantify basic engineering parameters
- Provide means to assess track substructure properties during inspection and investigations
- Data can be used to understand track behavior → improved safety
 - Information that can determine root cause of track conditions and inform remedial actions
 - Data that can be used to develop objective rules

Kashani and Hyslip, 2018

Goal: Single Pass Track Structural Inspection Informing Predictive Analytics (4.0)

Instrumentation Locations – Monitored by UIUC: Tim Stark

- Monitor track for changes during waiver period
- Solar panels and wind generators
- Sites monitor:
 - Daily train loading
 - Support conditions
 - Transient deflections
 - Soil moisture changes
 - Weather patterns
- Insight into mechanisms underlying track geometry changes.

Instrumentation Layout at Timber Tie Long-Term Monitoring Sites

Concrete sites have 10 tie strain gauges

Installed Video Cameras

Installed Accelerometers & Targets

Triaxial Accelerometer & Western Targets

Eastern Targets

Uniaxial Accelerometer

Installing Rail Strain Gages

Calibrating Rail Strain Gages

Installing Soil Moisture Probes

Installing Soil Moisture Probes

Effort of Tie Support on Track Geometry

- SE drops from 29% to 9% at Track Profile change
- Difference in tie-ballast gap larger during low SE
- Peak SE @ freezing temp.

Summary of Long-Term Monitoring To Date

- Fouling condition and weather significantly impact track geometry
- Track support changes rapidly and affects track geometry deterioration rates well after change occurred
- Rapid changes in track support highlight the potential for rapid changes in track geometry that have not been observed
- Track load redistribution occurs routinely with fouling and is a focus of future measurements

Problem Detection for Ballast

Velpe

Track Support Problems

- Track Load Redistribution
- Ballast Rearrangement
- Track Geometry

Inspection: GPR (Ground Penetrating Radar)

- Clean Ballast Depth, Moisture
- Longitudinal Variations

Tie Bearing Capacity Problems

- Tie and Rail Loads
- Cross Level and Geometry
- Track Position Movement

Inspection: Seismic (SASW)

- Resilient Modulus
- Density

Problem Detection for Subgrade

Velpe

Squeeze/Heave

Ballast Pockets

Photo: T. R. Sussmann

Inspection/Quality Control: Strength from Modulus Correlation

Foundation failure

Velpe

- Settlement: 30 cm over 8 years
- Failure due to sudden and significant settlement
- Spurred Canadian research into VTD

Figures: Canadian Transportation Safety Board Railway Investigation

Report: R04Q0040, 2004

The Future: RR 4.0

- Inspection and monitoring technology
 - Detect and quantify safety critical track structure parameters
 - Predict future condition and safe inspection interval
- Analytical solutions from smart sensors
 - Track load redistribution
 - Ballast properties for tie support, settlement rate, and lateral resistance
 - Track load redistribution analysis
- Condition forecasting will require site specific properties

Autonomous Track Geometry Measurement System

UNIVERSITY OF HARTFORD